поверхностные явления

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ

физ.-хим. явления, которые обусловлены особыми (по сравнению с объемными) свойствами поверхностных слоев жидкостей и твердых тел. Наиб. общее и важное свойство этих слоев — избыточная своб. энергия F = σS, где σ-поверхностное (межфазное) натяжение, для твердых тел-уд. своб. поверхностная энергия, S-площадь поверхности раздела фаз. П. я. протекают наиб. выраженно в гетерог. системах с сильно развитой поверхностью раздела фаз, т. е. в дисперсных системах. Изучение закономерностей П. я. является составной частью коллоидной химии и чрезвычайно важно для всех ее практич. приложений.

Самопроизвольные П. п. происходят вследствие уменьшения поверхностной энергии системы. Они м. б. обусловлены уменьшением общей поверхности системы либо уменьшением поверхностного натяжения на границе раздела фаз. К П. я., связанным с уменьшением общей поверхности, относят: 1) капиллярные явления, в частности приобретение каплями (в туманах) и газовыми пузырьками (в жидкой среде) сферич. формы, при которой поверхность капли (пузырька) минимальна. 2) Коалесценция — слияние капель в эмульсиях (или газовых пузырьков в пенах) при их непосредств. контакте. 3) Спекание мелких твердых частиц в порошках при достаточно высоких температурах. 4) Собирательная рекристаллизация — укрупнение зерен поликристаллич. материала при повышении температуры. 5) Изотермич. перегонка — увеличение объема крупных капель за счет уменьшения мелких. При этом вследствие повыш. давления паров жидкости с более высокой кривизной поверхности происходит испарение мелких капель и последующая их конденсация на более крупных каплях. Для жидкости, находящейся на твердой подложке, существ. роль в переносе вещества от мелких капель к крупным играет поверхностная диффузия. Изотермич. перегонка твердых частиц может происходить через жидкую фазу вследствие повыш. растворимости более мелких частиц.

При определенных условиях в системе могут происходить самопроизвольные П. я., сопровождающиеся увеличением общей поверхности раздела фаз. Так, самопроизвольное диспер-гирование и образование устойчивых лиофильных коллоидных систем (напр., критич. эмульсий) происходит в условиях, когда увеличение поверхностной энергии, вызываемое измельчением частиц, компенсируется их вовлечением в тепловое движение и соответствующим возрастанием энтропии (см. микроэмульсии). При гомог. образовании зародышей новой фазы при конденсации паров, кипении, кристаллизации из растворов и расплавов увеличение энергии системы вследствие образования новой поверхности компенсируется уменьшением хим. потенциала вещества при фазовом переходе. Критич. размеры зародышей, при превышении которых выделение новой фазы идет самопроизвольно, зависят от поверхностного натяжения, а также от величины перегрева (переохлаждения, пересыщения). Связь между этими параметрами определяется уравнением Гиббса (см. зарождение новой фазы).

Самопроизвольные П. я., в которых изменяется поверхностное натяжение: 1) образование огранки (равновесной формы) кристаллов. Равновесной форме соответствует минимум поверхностной энергии (принцип Гиббса-Кюри -Вульфа). Поэтому грани с меньшей уд. своб. поверхностной энергией имеют большую площадь поверхности, чем грани с высокой уд. своб. поверхностной энергией. 2) Коагуляция-слипание мелких твердых частиц в золях, суспензиях в крупные агрегаты с послед. разрушением системы и образованием коагуляц. осадков разл. структуры. Слипание происходит вследствие снижения межфазного натяжения в месте контакта частиц. Самопроизвольный обратный процесс — пептизация, т. е. распад коагуляц. агрегатов-происходит в том случае, если образование участков поверхности с повыш. значением поверхностного натяжения компенсируется вовлечением образующихся частиц в тепловое движение и соответствующим увеличением энтропии системы. 3) Адгезия — прилипание жидкости к твердому телу вследствие понижения уд. своб. поверхностной энергии. Адгезия определяет величину краевого угла смачивания, образуемого касательной к поверхности жидкости в контакте с твердым телом. 4) Гетерог. образование зародышей новой фазы-конденсация паров на твердой поверхности, образование на стенках паровых пузырьков при кипении, рост кристаллов на затравках. В этих П. я. существ. роль играют микронеоднородности твердой поверхности. Так, капиллярная конденсация легче идет в микроуглублениях, чем на плоских участках. 5) Растекание жидкости с меньшим поверхностным натяжением по поверхности др. жидкости (напр., нефти по воде). 6) Адсорбция-концентрирована в поверхностном слое или на поверхности жидкостей и твердых тел веществ, понижающих их поверхностное натяжение (уд. своб. поверхностную энергию) (см. поверхностно-активные вещества). 8) Электроповерхностные явления, обусловленные двойным электрич. слоем ионов и межфазными скачками потенциала на поверхности раздела фаз. К ним относятся электрокапиллярные явления, связанные с влиянием заряда поверхности на величину поверхностного натяжения; электрокинетич. явления — электрофорез, электроосмос, возникновение потенциала течения при протекании жидкости через пористую диафрагму и потенциала оседания при перемещении частиц в жидкости.

П. я. при деформировании и разрушении происходят не самопроизвольно, поскольку требуют затраты работы на образование и развитие новых поверхностей. Закономерности этих П. я. изучает физико-химическая механика. Одно из основных П. я. при деформации и разрушении — эффект Ребиндера (адсорбц. понижение прочности). Оно заключается в изменении прочности и пластичности твердых тел вследствие снижения поверхностной энергии во время деформации и развития трещины. Эффект Ребиндера происходит при нагружении материалов в присутствии определенных ПАВ или в контакте с жидкостями родственной мол. природы. Др. важное П. я. — значит. повышение прочности кристаллов в результате растворения поверхностных слоев или в процессе деформирования (эффект Иоффе); его связывают с устранением структурных дефектов, которых особенно много в поверхностных слоях кристаллич. вещества.

Затрата работы приводит также к механохим. эффектам, обусловленным кратковременной активацией атомов (молекул) поверхностного слоя в момент разрушения. Механохим. активация используется для инициирования и ускорения ряда хим. реакций (см. механохимия).

Использование П. я. широко и многообразно во мн. отраслях производства. Например, смачивание играет определяющую роль в вытеснении нефти из пластов, при флотац. обогащении полезных ископаемых, нанесении красок и покрытий, очистке газов от пыли, пропитке строит. и текстильных материалов. Как гомогенное, так и гетерог. образование зародышей новой фазы существенно сказывается на эффективности теплообменных процессов. Эффект Ребиндера используют при бурении горных пород, мех. обработке высокопрочных материалов, измельчении, обусловливая значит. сокращение энергозатрат. Модифицирование поверхности адсорбц. слоями позволяет гидрофобизировать разл. материалы (производство водоотталкивающих тканей, предотвращение слеживания гидрофильных порошков). Смачивание, адгезия, адсорбция изменяют биосовместимость крови с полимерными материалами, применяемыми для протезирования кровеносных сосудов. Спекание твердых частиц в порошковой металлургии, микрокапсулирование и мн. др. важные направления техники и технологии основаны на разнообразных П. я. в дисперсных и коллоидных системах.

П. я. играют важную роль в прир. атм. процессах; напр., возникновение значит. потенциалов оседания при перемещении капель тумана и дождя приводит к грозовым разрядам. Разрушение горных пород, контактирующих с оксидными и силикатными расплавами, обусловлено эффектом Ребиндера; адсорбция белков и липидов — важнейшая стадия в функционировании клеточных мембран; растекание орг. жидкостей по поверхности воды-одна из осн. причин загрязнения естеств. водоемов.

Исторический очерк. Исследования П. я. начались в 18 в. Первым экспериментально установленным фактом стал закон капиллярного подъема жидкости, смачивающей стенки капилляра (Дж. Жюрен, 1718). Сферич. форма капель несмачивающих жидкостей на твердой поверхности и цилиндрич. струй объяснена с помощью понятия о поверхностном натяжении жидкости в 1752 (Я. Сегнер). В 1785 Т.Е. Лови-цем обнаружена адсорбция растворенных в воде веществ на угле.

В 19 в. установлены осн. количеств. закономерности П. я.: закон капиллярного давления (П. Лаплас, 1806), постоянство краевого угла смачивания (T. Юнг, 1804), зависимость давления насыщ. пара жидкости от кривизны поверхности (У. Томсон, 1870); первые термодинамич. соотношения — уравнение изотермы адсорбции Гиббса (1878), зависимость поверхностного натяжения от электрич. потенциала (Г. Липман, 1875), сформулирован принцип минимума площади поверхности жидкости (Ж. Плато, 1843). Среди важнейших П. я. — наличие капиллярных волн на поверхности жидкости (У. Рэлей, 1890), двухмерное состояние и независимость действия адсорбц. слоев на поверхности раздела фаз (И. Ленг-мюр, 1917), адсорбц. понижение прочности (П. А. Ребиндер, 1923), расклинивающее давление в тонких жидких пленках (Б. В. Дерягин, 1935).

Новые направления исследования П. я. и их использование связаны с развитием микроэлектроники, космонавтики, биотехнологии, мицеллярного катализа, с разработкой биомембран, применением порошковой металлургии, производством тромборезистентных материалов, глазных линз и пр. В настоящее время проводят исследования П. я. в экстремальных условиях — при высоких температурах и давлениях, в глубоком вакууме, вблизи абс. нуля температур, при большой кривизне поверхности жидкости, в условиях интенсивных внеш. воздействий (вибрации, сильных электрич. и магн. полей, ионизирующих излучений и т. п.). Существ. внимание уделяется изучению кинетич. закономерностей П. я., что необходимо для выяснения их мол. механизмов.

Лит.: Pyсанов А. И., Фазовые равновесия и поверхностные явления, Л., 1967; Ребиндер П. А., Поверхностные явления в дисперсных системах, т. 1 — Коллоидная химия; т. 2-Физико-химическая механика, М., 1978–79; АдамсонА., Физическая химия поверхностей, пер. с англ., М., 1979; Щукин Е.Д., ПерцовА.В., Амелина Е.А., Коллоидная химия, М., 1982; Дерягин Б. В., Чураев H. В., Муллер В. M., Поверхностные силы, М., 1985; Измайлова В.H., Ямпольская Г.П., Сумм Б. Д., Поверхностные явления в белковых системах, М., 1988.

Б. Д. Сумм

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ — Явления, вызываемые избытком свободной энергии в пограничном слое — поверхностной энергии, повышенной активностью и ориентацией молекул поверхностного слоя, особенностями его структуры и состава. П. я. определяются также тем, что хим. и физ. Физический энциклопедический словарь
  2. Поверхностные явления — Выражение особых свойств поверхностных слоев, т. е. тонких слоев вещества на границе соприкосновения тел (сред, фаз). Эти свойства обусловлены избытком свободной энергии (См. Свободная энергия) поверхностного слоя, особенностями его структуры и состава. Большая советская энциклопедия
  3. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ — ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ — группа явлений, обусловленных тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности. Большой энциклопедический словарь