СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ

Одно из четырёх фундам. вз-ствий элем. ч-ц. Три остальных вз-ствия — слабое, электромагнитное и гравитационное — гораздо слабее С. в. В отличие от двух последних, С. в. явл. короткодействующим: его радиус =10-13 см (ожидаемый радиус слабого вз-ствия ок. 2•10-16 см).

В обычном стабильном в-ве при не слишком высокой темп-ре С. в. не вызывает никаких процессов и его роль сводится к созданию прочной связи между нуклонами в ядрах (энергия связи составляет в ср. ок. 8 МэВ на нуклон). Однако при столкновениях ядер или нуклонов, обладающих достаточно высокой энергией, С. в. приводит к многочисл. ядерным реакциям. Особенно важную роль в природе играют реакции слияния (термоядерного синтеза), в результате к-рых четыре нуклона объединяются в ядро гелия. Эти реакции (при существ. участии также и слабого вз-ствия) идут на Солнце и явл. осн. источником используемой на Земле энергии. Начиная с энергий сталкивающихся нуклонов порядка неск. сотен МэВ, С. в. приводит к рождению p-мезонов, а при ещё больших энергиях — к рождению странных частиц (К-мезонов, гиперонов), «очарованных» частиц, «красивых» частиц и множества мезонных и барионных резонансов. Все эти сильно взаимодействующие ч-цы наз. адронами.

На опыте установлен ряд закономерностей С. в. и участвующих в нём ч-ц. Так, было обнаружено, что существуют группы адронов с близкими св-вами — изотопические мультиплеты. Входящие в один такой мультиплет ч-цы имеют одинаковые значения барионного заряда, странности, «очарования», «красоты», одинаковые спины, близкие (с точностью от 0,1% до 3%) массы и отличаются лишь значениями электрич. зарядов. Напр., протон и нейтрон образуют изотопич. дуплет, а p+-, p0-, p--мезоны — изотопич. триплет. С. в. обладает св-вом изотопической инвариантности; у всех ч-ц, входящих в один изотопич. мультиплет, С. в. одинаково. Изотопич. инвариантность нарушается эл.-магн. вз-ствием и малыми разностями масс ч-ц, принадлежащих данному изотопич. мультиплету.

По мере обнаружения новых адронов (большинство адронных резонансов было открыто в 60-х гг.) выяснилось, что изотопич. мультиплеты группируются в ещё большие семейства — т. н. SU(3)-мультиплеты (см. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ). Массы ч-ц, входящих в один такой мультиплет, различаются довольно сильно. Это явл. одним из проявлений того, что SU(3)-симметрия, ответственная за комплектование SU(3)-мультиплетов, нарушается сильнее, чем изотопич. инвариантность.

В классификации адронов чётко проявляется и др. закономерность: ч-цы с данными барионным зарядом, странностью, изотопич. спином и электрич. зарядом, отличающиеся только значениями спина, также образуют семейства. Если по оси абсцисс откладывать квадраты масс ч-ц, М2, а по оси ординат — значения их спинов J, то ч-цы, принадлежащие данному семейству, располагаются на прямой линии: J=М2. Такие линии, изображающие зависимость J от М2, получили назв. траекторий Редже (см. РЕДЖЕ ПОЛЮСОВ МЕТОД).

Процессы С. в. так же, как и процессы, обусловленные др. типами вз-ствий, подчиняются таким фундам. принципам, как причинность (см. ПРИЧИННОСТИ ПРИНЦИП) и перекрёстная симметрия (кроссинг-симметрия). Матем. следствием причинности явл. то, что амплитуды, описывающие процессы вз-ствия элем. ч-ц (сечение процесса пропорц. квадрату модуля амплитуды),— аналитич. ф-ции своих аргументов. Аналитичность амплитуд приводит, в частности, к дисперсионным соотношениям, связывающим между собой действнт. и мнимые части амплитуд (к-рые могут быть независимо измерены опытным путём). Кроссинг-симметрия заключается в том, что одна и та же аналитич. ф-ция при разл. значениях своих переменных описывает амплитуды неск. процессов, напр. p-+р®p-+р, p++р®p++р и р+р=®p++p-, к-рые получаются один из другого путём переноса ч-цы из левой части реакции в правую (и наоборот) с одноврем. заменой её на соответствующую античастицу. В результате св-ва амплитуды процесса аннигиляции р+р=®p++p- имеют тесную связь со св-вами амплитуды рассеяния p±-мезонов протонами. Аналогичные связи существуют и для др. реакций.

Подход, основанный на общих св-вах амплитуд процессов, особенно плодотворен при высоких энергиях, когда энергии сталкивающихся ч-ц много больше их энергий покоя mc (m — масса ч-цы). В области асимптотически больших энергий ? (?/mc2®?) имеется ряд фундам. теорем, из к-рых наиб. важны теорема Фруассара и теорема Померанчука. Согласно теореме Фруассара, сечения процессов С. в. адронов не могут асимптотически расти быстрее, чем ln2?. Согласно теореме Померанчука, если сечение вз-ствия адронов с ростом энергии стремится к конечному пределу, то полное сечение вз-ствия ч-цы и соответствующей античастицы с данной мишенью асимптотически должны быть равными, напр.

sполн(р=р)=sполн(рр), sполн(К+р) =sполн(K-р), где sполн(ab) обозначает полное сечение вз-ствия ч-ц а и b.

На опыте характерные значения полных сечений С. в. адронов при высоких энергиях лежат в области 20—25 мбарн для вз-ствия К- и p-мезонов с нуклонами и 40—45 мбарн для вз-ствия нуклонов с нуклонами и обнаруживают тенденцию к медл. росту. Сечение упругого рассеяния составляет ок. 1/5 полного сечения.

При сближении адронов высоких энергий на расстояния порядка радиуса действия С. в. доминируют множественные процессы. В этих условиях упругое рассеяние по своему хар-ру аналогично дифракции света на полностью поглощающем («чёрном») или, точнее, частично прозрачном («тёмно-сером») шарике (с радиусом порядка радиуса действия С. в.). В частности, угл. распределение упруго рассеянных ч-ц имеет острый максимум вперёд (по направлению падающих ч-ц), подобный максимуму при дифракц. рассеянии света. При этом характерные углы q составляют величину порядка l/R, где l — длина волны де Бройля рассеиваемой ч-цы (l=ћ/p, р — импульс ч-цы), а R — радиус нуклона (=10-13 см).

Детальная теор. картина упругого рассеяния адронов, а также двухчастичных неупругих реакций (напр., реакции перезарядки p-+р®p°+n) основывается на представлении о том, что в процессе рассеяния сталкивающиеся ч-цы обмениваются своеобразными адронными комплексами с перем. спином и массой. Эти комплексы ведут себя как своего рода квазичастицы и наз. реджеонами. В результате устанавливается глубокая связь между процессами рассеяния и траекториями Редже. При этом оказывается, что радиус ч-цы (радиус «тёмно-серого» шарика) меняется с ростом энергии.

Как отмечалось, осн. доля процессов при высоких энергиях — множеств. рождение ч-ц. Ср. множественность (ср. число ч-ц, рождённых в одном столкновении) при энергиях в системе центра инерции (с. ц. и.) порядка десятков ГэВ равна прибл. 10—12 (в основном это p-мезоны) и медленно растёт с ростом энергии (ок. 27 при энергии 540 ГэВ). Поперечные импульсы рождённых ч-ц практически не зависят от энергии сталкивающихся ч-ц и в основном составляют примерно 0,3—0,5 ГэВ/с. Этот факт, обнаруженный впервые при изучении космических лучей, был подтверждён опытами на ускорителях. Ч-цы с большими поперечными импульсами (?1ГэВ/с) рождаются очень редко, однако не так редко, как можно было бы ожидать, если бы нуклоны были абсолютно «рыхлыми» образованиями размером порядка 10-13 см. Рождение ч-ц с большими поперечными импульсами подтверждает картину строения нуклона, полученную при исследовании глубоко неупругих процессов вз-ствия эл-нов и нейтрино с нуклонами. Согласно этой картине, при больших передачах импульса нуклон ведёт себя как совокупность лёгких точечных (бесструктурных) ч-ц, получивших назв. партонов. В реакциях множеств. рождения распределения вторичных ч-ц по продольным импульсам подобны при разл. энергиях столкновения. Они совпадают друг с другом, если использовать в кач-ве переменной отношение р/ркакс, где р — импульс вторичной ч-цы, а рмакс — её макс. возможный импульс при данной энергии сталкивающихся ч-ц. Такое поведение, когда распределения зависят от безразмерного параметра (р/pмакс), наз. с к е й л и н г о м Фейнмана (см. МАСШТАБНАЯ ИНВАРИАНТНОСТЬ).

Законченная теория адронов и С. в. между ними пока отсутствует, однако имеется теория, к-рая, не являясь ни законченной, ни общепризнанной, позволяет объяснить осн. св-ва адронов. Эта теория — квантовая хромодинамика, согласно к-рой адроны состоят из кварков (мезоны из кварка и антикварка, а барионы — из трёх кварков), а силы между кварками обусловлены обменом глюонами. Все обнаруженные адроны состоят из кварков пяти разл. типов («ароматов»): u, d, s, с, b.

Нуклоны и p-мезоны содержат лишь и- и d-кварки, странные ч-цы содержат наряду с u и d также и s-кварки, «очарованные» ч-цы — с-кварки, а открытые в 1977 ипсилон-частицы (Г) — b-кварки. В сильном и эл.-магн. вз-ствиях «аромат» сохраняется, в слабом вз-ствии кварки одного типа («аромата») превращаются в кварки др. типа. В процессах С. в. сталкивающиеся адроны могут обмениваться содержащимися в них кварками, и, кроме того, происходит также рождение и аннигиляция пар кварк-антикварк (см. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ).

Кварки обладают дробными электрич. зарядами Q: Qu=Qc=+2/3, Qd=Qs=Qb=-1/3 (в ед. элем. электрич. заряда е). Массы лёгких кварков u, d, s выражаются через массы p- и К-мезонов, а массы с и b — соответственно через массы y частиц и ?-частиц. Теор. оценки дают: mu=4 МэВ, md=7 МэВ, ms=150 МэВ, mс=1,3 ГэВ, mb=4,5 ГэВ. Ожидают, что существуют ещё более тяжёлые кварки, t.

Свободные кварки, несмотря на тщат. поиски, не обнаружены. Согласно квант. .хромодинамике, кварки не могут быть освобождены из адронов: они находятся внутри адронов в области размером =10-13 см. Такое необычное поведение кварков (оно наз. англ. словом «конфайнмент» — заключение, пленение) связано со св-вами глюонов и с существованием ещё одного квант. числа — «цвет». Кварк каждого «аромата» может находиться в трёх «цветовых» состояниях, или обладать тремя разл. «ц в е т о в ы м и з а р я д а м и». Во всех наблюдаемых адронах «цветовые заряды» кварков в совокупности компенсируются, так что «цветовые заряды» адронов равны нулю (обычно говорят, что адроны «бесцветные», «белые»). Подобно тому как электрич. заряд явл. источником фотонного поля, «цветовые заряды» явл. источниками глюонных полей. Имеется восемь разл. глюонов. Все они — безмассовые, электрически нейтр. ч-цы со спином 1 и отличаются друг от друга комбинациями «цветовых зарядов». Наличие у глюонов «цветовых зарядов» делает их св-ва необычными. В частности, силы, обусловленные обменом глюонами, растут с ростом расстояния между двумя «цветовыми зарядами», что, по-видимому, приводит в конечном счёте к «пленению» кварков внутри адронов (т. н. удержание «цвета»). «Пленёнными» оказываются и сами глгюоны, так что свободных «цветных» частиц не существует.

«Цветовые заряды» кварков не зависят от их «ароматов», и если бы массы всех кварков были одинаковы, то и массы адронов были бы вырождены по «ароматам». Напр., были бы одинаковые массы p-, К- и D-мезонов. Малая величина разности масс u- и d-кварков по сравнению с их кинетич. энергиями внутри адронов явл. причиной изотопич. инвариантности. Малая величина самих масс u- и d-кварков явл. причиной т. н. киральной инвариантности С. в. (см. КИРАЛЬНАЯ СИММЕТРИЯ).

Системы, состоящие из u-, d-, s-кварков, адекватно описывают ч-цы, входящие в известные мезонные и барионные SU(3)-мультиплеты. Если бы масса s-кварка была того же масштаба, что и массы u- и d-кварков, то SU(3)-симметрия С. в. была бы такой же хорошей симметрией, как и изотопич. инвариантность.

Когда адрон участвует в процессе, в к-ром он получает большой импульс (глубоко неупругое рассеяние, рождение ч-ц с большими поперечными импульсами), то осн. вз-ствие разыгрывается на малых расстояниях, глубоко внутри адрона. Здесь С. в. кварков с глюонами, а следовательно, и кварков между собой ослабевает и на столкновение кварка с энергичной ч-цей (с эл-ном или др. кварком) соседние кварки влияют очень слабо. Т. о., при больших передачах импульса кварки (и глюоны) сталкиваются как практически свободные ч-цы (т. е. явл. партонами). Это св-во кварков и глюонов, предсказываемое квант. хромодинамикой, наз. асимптотической свободой. При удалении партона на большие расстояния от той точки, где он получил большой импульс, он превращается в струю летящих в одном направлении адронов. При этом происходит обмен «цветовым зарядом» с оставшимися кварками, так что как струя, так и остаток получаются «белыми». На опыте такие адронные струи наблюдались в ряде процессов.

Теория С. в. на малых расстояниях, связанная с асимптотич. свободой, практически завершена, но динамика вз-ствия на больших расстояниях и, в частности, механизм «пленения» поняты пока не столь хорошо. Здесь важную роль, по-видимому, играют глюонные флуктуации физ. вакуума (см. ИНСТАНТОН). Возможно, что адроны явл. как бы пузырьками кваркового газа в плотном вакууме, создаваемом флуктуациями глюонного поля. Качественно такой вывод согласуется с описанием адронов на основе т. н. «модели мешков» (см. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ).

Существует ряд теоретич. схем, в к-рых делается попытка создать единую теорию сильного, слабого и эл.-магн. вз-ствий (т. н. «Великое объединение»), В этих схемах на единой основе рассматриваются лептоны и кварки, промежуточные векторные бозоны, фотоны и глюоны.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ — СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ, самая сильная из четырех основных сил природы; связывает вместе протоны и нейтроны внутри ЯДРА атома. И сильное, и СЛАБОЕ ВЗАИМОДЕЙСТВИЕ реализуются на очень коротких расстояниях (одна миллионная одной миллионной сантиметра)... Научно-технический словарь
  2. СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ — СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ — самое сильное из фундаментальных взаимодействий элементарных частиц. В сильном взаимодействии участвуют адроны. Сильное взаимодействие превосходит электромагнитное взаимодействие примерно в 100 раз, его радиус действия ок. Большой энциклопедический словарь