ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Введение.

Э. ч. в точном значении этого термина — первичные, далее неразложимые ч-цы, из к-рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго — для наименования большой группы мельчайших ч-ц материи, подчинённых условию, что они не явл. атомами или ат. ядрами (исключение составляет протон). В эту группу помимо протона входят: нейтрон, электрон, фотон, а также пи-мезоны, мюоны, тяжёлые лептоны (t), нейтрино трёх типов (электронное, мюонное и t-нейтрино), странные частицы (К-мезоны, гипероны), разнообразные резонансы, мезоны со скрытым «очарованием» (J/y,y' и др.), «очарованные» частицы, ипсилон-частицы (?), «красивые» ч-цы, промежуточные векторные бозоны (W ,Z°) — всего более 350 ч-ц, в осн. нестабильных. Их число продолжает расти (и, скорее всего, неограниченно велико). Большинство перечисл. ч-ц не удовлетворяет строгому определению элементарности, поскольку, по совр. представлениям, они (в частности, протон и нейтрон) явл. составными системами (см. ниже). Общее св-во всех этих ч-ц заключается в том, что они явл. специфич. формами существования материи, не ассоциированной в ядра и атомы (иногда по этой причине их наз. «субъядерными ч-цами»).

В соответствии со сложившейся практикой термин «Э. ч.» употребляется ниже в кач-ве общего назв. субъядерных ч-ц. При обсуждении ч-ц, претендующих на роль первичных элементов материи, будет использоваться термин «истинно Э. ч.».

Краткие исторические сведения.

Открытие Э. ч. явилось закономерным результатом общих успехов в изучении строения в-ва, достигнутых физикой к кон. 19 в. Первой открытой Э. ч. был эл-н — носитель отрицат. электрич. заряда в атомах (англ. физик Дж. Дж. Томсон, 1897). В 1919 англ. физик Э. Резерфорд обнаружил среди ч-ц, выбитых из ат. ядер, протоны — ч-цы с единичным положит. зарядом и массой, в 1840 раз превышающей массу эл-на. Другая ч-ца, входящая в состав ядра,— нейтрон — была открыта в 1932 англ. физиком Дж. Чедвиком. Представление о фотоне как ч-це берёт своё начало с работы нем. физика М. Планка (1900), выдвинувшего предположение о квантованности энергии эл.-магн. излучения абсолютно чёрного тела. В развитие идеи Планка А. Эйнштейн (1905) постулировал, что эл.-магн. излучение явл. потоком отд. квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые эксперим. доказательства существования фотона были даны амер. физиками Р. Милликеном (1912—15) и A. Комптоном (1922; (см. КОМПТОНА ЭФФЕКТ)). Существование нейтрино как особой Э. ч. впервые предположено B. Паули (1930); экспериментально электронное нейтрино открыто лишь в 1953 (амер. физики Ф. Райнес, К. Коуэн). Позитрон — ч-ца с массой эл-на, но с положит. электрич. зарядом, была обнаружена в составе косм. лучей амер. физиком К. Андерсоном в 1932. Позитрон был первой открытой античастицей (см. ниже). В 1936 Андерсон и С. Неддермейер (США) обнаружили при исследовании косм. лучей мюоны (обоих знаков электрич. заряда) — ч-цы с массой ок. 200 масс эл-на, а в остальном удивительно близкие по св-вам к е- и е+ . В 1947 также в косм. лучах группой англ. физика С. Пауэлла были открыты p+- и p--мезоны. Существование подобных ч-ц было предположено япон. физиком X. Юкавой в 1935. В кон. 40-х— нач. 50-х гг. была открыта большая группа ч-ц с необычными св-вами, получивших назв. «странных». Первые ч-цы этой группы— К+- и К --мезоны, L-гипероны — были обнаружены в косм. лучах. Последующие открытия странных ч-ц были сделаны с помощью ускорителей заряж. ч-ц. С нач. 50-х гг. ускорители превратились в осн. инструмент для исследования Э. ч. Были открыты антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960), а в 1964 — самый тяжёлый гиперон W-. В 1960-х гг. на ускорителях было обнаружено большое число крайне неустойчивых (по сравнению с др. нестабильными, точнее, квазистабильными, Э. ч.) ч-ц, получивших назв. резонансов, составляющих осн. часть Э. ч. В 1962 выяснилось, что существуют два разных нейтрино: электронное и мюонное. В 1974 были обнаружены массивные (в 3—4 протонные массы) и в то же время относительно устойчивые (по сравнению с обычными резонансами) J/y и y'-частицы. Они оказались тесно связанными с новым семейством Э. ч.— «очарованных», первые представители к-рого (D°, D+ , F+ , L+c) были открыты в 1976. В 1975 был открыт тяжёлый аналог эл-на и мюона — t-лептон, в 1977 — ?-частицы с массой порядка десяти протонных масс, в 1981— «красивые» ч-цы, а в 1983— промежуточные векторные бозоны.

Т. о., за годы, прошедшие после открытия эл-на, было выявлено огромное число разнообразных микрочастиц. Мир Э. ч. оказался очень сложно устроенным, а их св-ва во мн. отношениях неожиданными.

Основные свойства. Классы взаимодействий.

Все Э. ч. явл. объектами исключительно малых масс и размеров. У большинства из них массы имеют порядок величины массы протона, равной 1,6•10-24 г (для ч-ц с ненулевой массой заметно меньше лишь масса эл-на: 0,9•10-27 г). Размеры протона, нейтрона, p-мезона и др. адронов порядка 10-13 см, а эл-на и мюона не определены, но они меньше 10-16 см. Микроскопич. массы и размеры Э. ч. обусловливают квант. специфику их поведения. Характерные де-бройлевские длины волн Э. ч., как правило, сравнимы или больше их типичных размеров. В соответствии с этим квант. закономерности явл. определяющими в поведении Э. ч.

Наиболее важное квант. св-во всех Э. ч.— способность рождаться и уничтожаться (испускаться и поглощаться) при вз-ствии с др. ч-цами. В этом отношении они полностью аналогичны фотонам. Все процессы с Э. ч. (включая распады) протекают через последовательность актов их поглощения и испускания.

Разл. процессы с Э. ч. при изуч. энергиях заметно отличаются по интенсивности протекания. В соответствии с этим вз-ствия Э. ч. феноменологически делят на неск. классов: сильное, эл.-магн. и слабое. Кроме того, все Э. ч. обладают гравитац. вз-ствием.

Сильное взаимодействие вызывает процессы, протекающие с наибольшей, по сравнению с др. процессами, интенсивностью, и приводит к самой сильной связи Э. ч. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов.

В основе электромагнитного взаимодействия лежит связь ч-ц с эл.-магн. полем. Обусловленные им процессы менее интенсивны, чем процессы сильного вз-ствия, а порождаемая им связь Э. ч. заметно слабее. Эл.-магнитное взаимодействие, в частности, ответственно за связь ат. электронов с ядрами и связь атомов в молекулах.

Слабое взаимодействие вызывает очень медленно протекающие процессы с Э. ч., в том числе распады квазистабильных Э. ч., времена жизни большинства к-рых лежат в диапазоне 10-6—10-14с.

Гравитац. вз-ствие на характерных для Э. ч. расстояниях =10-13 см даст чрезвычайно малые эффекты из-за малости масс Э. ч., но может быть существенным на расстояниях =10-33 см (см. ниже).

«Силу» разл. классов вз-ствий Э. ч. можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант связи для соответствующих вз-ствий. Для сильного, эл.-магн., слабого и гравитац. вз-ствий протонов при энергии процесса в системе центра инерции (с. ц. и.) =1 ГэВ эти параметры соотносятся как 1:10-2:10-10:10-38. Необходимость указания энергии процесса связана с тем, что для слабого вз-ствия безразмерный параметр зависит от энергии. Кроме того, сами интенсивности разл. процессов по-разному зависят от энергии. Это приводит к тому, что относит. роль разл. вз-ствий, вообще говоря, меняется с ростом энергии ч-ц, так что разделение вз-ствий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы вз-ствий имеют, однако, и др. специфику, связанную с разл. св-вами их симметрии, к-рая способствует их разделению и при более высоких энергиях. В пределе самых больших энергий деление вз-ствий Э. ч. на классы, по-видимому, утрачивает физ. смысл (см. ВЕЛИКОЕ ОБЪЕДИНЕНИЕ).

В зависимости от участия в тех или иных видах вз-ствий все изуч. Э. ч., за исключением фотона, разбиваются на две осн. группы: адроны и лептоны. Адроны характеризуются наличием у них сильного вз-ствия наряду с эл.-магн. и слабым, лептоны участвуют только в эл.-магн. и слабом вз-ствиях. (Наличие гравитац. вз-ствия у всех Э. ч., включая фотон, подразумевается.)

Характеристики Э. ч.

Каждая Э. ч. наряду со спецификой присущих ей вз-ствий описывается набором дискр. значений определ. физ. величин -своими хар-ками (дискр. значения, измеренные в соответствующих ед., обычно образуют совокупность целых или дробных чисел, к-рые наз. квант. числами Э. ч.). Общими хар-ками всех Э. ч. явл. масса т, время жизни т, спин J и электрич. заряд Q.

В зависимости от времени жизни Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными в пределах точности совр. измерений явл. эл-н (t>5•1021 лет), протон (t>1031 лет), фотон и нейтрино. К квазистабильным относят ч-цы, распадающиеся за счёт эл.-магн. и слабого вз-ствий; их времена жизни t>10-20 с. Резонансами наз. Э. ч., распадающиеся за счёт сильного вз-ствия; их характерные времена жизни 10-22 —10-24 с. Спин Э. ч. явл. целым или полуцелым кратным постоянной Планка п. В этих ед. спин я- и К-мезонов равен 0, у протона, нейтрона и эл-на J=1/2, у фотона J=1 и т. д. Существуют ч-цы и с большим спином. Электрич. заряды Э. ч. явл. целыми кратными величины е»1,6•10-19 Кл, наз. элементарным электрическим зарядом. У известных Э. ч. Q=0, ±1, ±2.

Помимо указанных величин, Э. ч. дополнительно характеризуются ещё рядом квант. чисел, к-рые наз. «внутренними». Лептоны несут специфич. лептонный заряд (L): электронный Le, равный +1 для е- и ve, мюонный Lm, равный +1 для m- и vm , и Lt , связанный с t-лептоном (Lt =+1 для t-и -1 для t+). Для адронов L=0. Адронам с полуцелым спином приписывают барионный заряд В(¦В¦=1). Адроны с B=+1 образуют подгруппу барионое, с В=0 — подгруппу мезонов. Для лептонов В=0. Для фотона B=0 и L=0.

Адроны подразделяются на обычные (нестранные) ч-цы (протон, нейтрон, p-мезоны), странные ч-цы, «очарованные» и «красивые» ч-цы. Этому делению отвечает наличие у адронов особых квант. чисел: странности S, «очарования» С и «красоты» b. Внутри разных групп адронов имеются семейства ч-ц, близких по массе, с очень сходными св-вами по отношению к сильному вз-ствию, но с разл. значениями электрич. заряда. Э. ч., входящие в каждое такое семейство (простейший пример к-рого — протон и нейтрон), имеют общее квант. число — изотопический спин I (см. ИЗОТОПИЧЕСКАЯ ИНВАРИАНТНОСТЬ), принимающий, как и обычный спин, целые и полуцелые значения. Семейства наз. изотопич. мультиплетами. Число ч-ц в мультиплете равно 2I+1; они отличаются друг от друга значением «проекции» изотопич. спина I3, и соответствующие значения их электрич. зарядов даются обобщённой ф-лой Гелл-Мана — Нишиджимы:

Q = I3 +Y/2,

где Y=B+S+C-b — т. н. гиперзаряд адрона, равный удвоенному ср. заряду ч-цы в изотопич. мультиплете. Важная хар-ка адронов — внутр. чётность Р, принимающая значения ±1. Для всех Э. ч. с ненулевыми значениями хотя бы одного из квант. чисел Q, L, В, S, С, b существуют античастицы с теми же значениями массы, времени жизни, спина и для адронов — изотопич. спина, но с противоположными знаками указанных квант. чисел, а для барионов — с противоположным знаком внутр. чётности. Ч-цы, тождественные своим античастицам, наз. истинно нейтральными. Истинно нейтр. адроны обладают спец. квант. числом — зарядовой чётностью С со значениями ±1; примеры таких ч-ц — фотон, p°, ?-частицы.

Квант. числа Э. ч. разделяются на точные, т. е. сохраняющиеся во всех процессах, и неточные, к-рые в ряде процессов не сохраняются. Спин J — точное квант. число. На уровне совр. знаний точными явл. и квант. числа Q, В, L, хотя теоретически допустимы нарушения сохранения В и L. Большинство квант. чисел адронов неточные. Изотопич. спин, сохраняясь в сильном вз-ствии, не сохраняется в эл.-магн. и слабом. Странность, «очарование», «красота» сохраняются в сильном и эл.-магн. вз-ствиях, но не сохраняются в слабом. Слабое вз-ствие изменяет также внутр. и зарядовую чётности. Причины несохранения квант. чисел адронов неясны и, по-видимому, связаны со структурой эл.-магн. и слабого вз-ствий. Сохранение или несохранение тех или иных квант. чисел — одно из существ. проявлений различий классов вз-ствий Э. ч.

В табл. 1 приведены наиб. хорошо изученные Э. ч. и их квант. числа. Из неё следует, что осн. часть 0. ч.— адроны.

Классификация адронов. Унитарная симметрия.

Большое число адронов уже в нач. 50-х гг. явилось основанием для поисков закономерностей в распределении масс и квант. чисел барионов и мезонов, к-рые могли бы составить основу их классификации. Выделение изотопич. мультиплетов адронов было первым шагом на этом пути. С матем. точки зрения объединение адронов в изотопич. мультиплеты отражает наличие у них симметрии, связанной с группой унитарных преобразований в нек-ром двумерном «внутр. пр-ве» — «изотопич. пр-ве» (с группой SU(2)). Изотопические мультиплеты суть неприводимые представления группы SU(2).

Концепция симметрии как фактора, определяющего существование разл. групп и семейств Э. ч., явл. ведущей в совр. теории Э. ч. Наличие «внутр.» квант. чисел, характеризующих эти семейства (таких, как изотопич. спин и др.), отражает существование симметрии относительно преобразований в особых, приписываемых Э. ч. «внутренних пр-вах».

Детальное рассмотрение позволило сделать вывод о том, что странные и обычные адроны в совокупности образуют более широкие объединения ч-ц с близкими св-вами, чем изотопич. мультиплеты. Они наз. унитарными мультиплетами. Числа входящих в них ч-ц равны 8 (октет) и 40 (декуплет). Ч-цы такого мультиплета имеют одинаковые спин и внутр. чётность, но различаются значениями не только электрич. заряда (как ч-цы изотопич. мультиплета), но и странности. Пример унитарных октетов:

мезонов, Jp= 0-: p+, p°, p-, h, К+, К°, К-, К=°,

барионов, Jp = 1/2+: S+ , S°, S-, L, p, n, X-, X°

и унитарного декуплета барионов: Jp=3/2+ : D1++, D1+, D, L1-, S*+, S*°, S*-, X*-, X*°, W-.

Возникновение унитарных мультиплетов истолковывается как проявление существования у адронов группы симметрии более широкой, чем SU(2), а именно группы SU(3). Соответствующая симметрия получила назв. унитарной симметрии; 8 и 10 — размерности неприводимых представлений группы SU(3). Унитарная симметрия менее точная, чем изотопическая. В соответствии с этим различие в массах ч-ц, входящих в унитарные мультиплеты, довольно значительно.

Открытие «очарованных» и «красивых» адронов позволяет говорить об унитарных сверхмультиплетах и о существовании ещё более широких симметрии, связанных с унитарными группами SU(4) и SU(5), хотя и сильно нарушенных.

Обнаружение у адронов св-в симметрии, связанных с унитарными группами, и закономерностей разбиения на мультиплеты, отвечающие строго определ. представлениям этих групп, явилось основой для вывода о существовании особых структурных единиц, из к-рых построены адроны, — кварков.

Кварковая модель адронов.

Теория унитарных групп позволяет построить все представления группы SU(n) (и, следовательно, все мультиплеты адронов), повторяя определ. число раз самое простое представление группы, содержащее n компонент. Допуская наличие ч-ц (кварков), связанных с этим простейшим представлением, можно заключить, что все адроны явл. комбинациями кварков. Такое допущение было сделано в 1964 (Г. Цвейг и независимо от него М. Гелл-Ман, США). Исходя из SU(3)-симметрии, они предположили наличие трёх фундам. ч-ц со спином 1/2: u-, d-, s-кварков (совр. обозначения), из к-рых построены адроны. Наблюдаемая размерность унитарных мультиплетов (8 и 10) была воспроизведена при допущении, что мезоны составлены из кварка (q) и антикварка (q=),— символически: М=(qq=), a барионы из трёх кварков,— символически: В=(qqq). В дальнейшем с учётом новых эксперим. фактов эта модель строения адронов была расширена путём включения в неё ещё двух кварков: «очарованного» (с) и «красивого» (b). Все эксперим. данные хорошо согласуются с предлож. моделью.

Табл. 1. ОСНОВНЫЕ ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИХ ХАРАКТЕРИСТИКИЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. Рис. 2

Примечание. Слева звёздочкой помечены резонансы, для к-рых вместо времени жизни т приведена ширина Г=ћ/t. Истинно нейтр. ч-цы помещены посередине между ч-цами и античастицами. Члены одного изотопич. мультиплета расположены на одной строке (в тех случаях, когда известны хар-ки каждого члена мультиплета, —с небольшим смещением по вертикали). Изменение знака внутр. чётности Р у антибарионов, так же как изменение знаков S и С у всех античастиц, не указано. Для лептонов, участвующих в характерном для них слабом вз-ствии, Р не явл. хорошим (сохраняющимся) квант. числом и поэтому не приведена.

Табл. 2. ХАРАКТЕРИСТИКИ КВАРКОВЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. Рис. 3

Из теории получаются квант. числа кварков, приведённые в табл. 2. Отличительная их черта — дробные значения электрич. и барионного зарядов, не встречающиеся ни у одной из наблюдавшихся Э. ч. С индексом а у каждого типа («аромата») кварка qi (i=l, 2, 3, 4, 5) связана особая хар-ка— «цвет», введение к-рой понадобилось для того, чтобы не возникало противоречия с принципом Паули при построении адронов, состоящих из трёх одинаковых кварков (D++(uuu), D- (ddd), W-(sss)). Индекс a принимает значения 1, 2, 3, т. е. каждый тип кварка qi представлен тремя разновидностями qai(Н. Н. Боголюбов с сотрудниками, 1965; Й. Намбу и М. Хан (США), 1965). Введение трёх «цветов» позволяет в принципе построить систематику адронов и на основе кварков с целыми электрич. и барионными зарядами, хотя эксперимент скорее всего не свидетельствует в пользу такой возможности. В наблюдаемых адронах кварки разных «цветов» скомбинированы т. о., что возникающие состояния не несут «цвета» — явл. «бесцветными».

В табл. 2 но приведены массы кварков. Это связано с тем, что кварки пока выступают лишь как составные части адронов,— в свободном состоянии они не наблюдались, и их массы непосредственно невозможно было измерить. На основании величин масс разл. связ. состояний кварков (обычные, странные, «очарованные» адроны, ?-частицы) можно только заключить, что эфф. массы m кварков, входящих в адроны, подчиняются след. закономерности:

mu ?md < ms <- mc < mb.

Всё многообразие адронов возникает за счёт разл, сочетаний u-, d-, s-, с- и b-кварков, образующих связ. состояния. Обычным адронам (напр., нуклонам, p-мезонам) соответствуют связ. состояния, построенные только из u- и d-кварков (для мезонов с возможным участием комбинаций (ss=), (cc=), (bb=)). Наличие в связ. состоянии, наряду с u- и d-кварками, одного s-, с- или b-кварка означает, что соответствующий адрон странный (S=-1), «очарованный» (С = + 1) или «красивый» (b=+1). В состав бариона могут входить два и три s-кварка (соотв. с- или 6-кварка), возможны и их более сложные сочетания.

Поскольку спин кварков равен 1/2, из приведённой кварковой структуры адронов следует (в полном соответствии с экспериментом) целый спин у мезонов и полуцелый у барионов. При этом в состояниях, отвечающих орбит. моменту l=0, в частности в осн. состояниях, значения спина мезонов должны равняться 0 или 1 (для антипараллельной ­? и параллельной ­­ ориентации спинов кварков), а спина барионов — 1/2 или 3/2 (для спиновых конфигураций ­­? и ­­­). С учётом того, что внутр. чётность системы кварк-антикварк отрицательна, значения Jp при l=0 для мезонов равны 0- и 1-, для барионов -1/2+ и 3/2+ . Именно эти значения Jp наблюдаются у адронов, имеющих наименьшую массу при заданных значениях I, S и С (см. табл. 1).

Табл. 3. КВАРКОВЫЙ СОСТАВ МЕЗОНОВ с JP=0-ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. Рис. 4

В кач-ве иллюстрации в табл. 3 и 4 приведены вытекающие из описанных представлений кварковые составы мезонов с Jp=0- и барионов с Jp=1/2+ и указаны их соответствия известным ч-цам (символы наблюдавшихся ч-ц подчёркнуты).

Кварковая модель объясняет наличие большого числа адронов и преобладание среди них резонансов. Многочисленность адронов — отражение их сложного строения и возможности существования различных возбуждённых состояний кварковых систем. Последние и образуют осн. часть резонансов.

Табл. 4. КВАРКОВЫЙ СОСТАВ БАРИОНОВ С JP=1/2+ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. Рис. 5

Примечание. Индекс А и ( ) означают антисимметризацию, индекс S и ( )—симметризацию; всюду предполагается суммирование по «цветам» кварков.

При первонач. формулировке кварковой модели кварки рассматривались как гипотетические структурные элементы, открывающие возможность удобной классификации адронов. В результате экспериментов, проведённых в кон. 60-х — нач. 70-х гг., выяснилось, что гипотеза кварков наиболее простым и естеств. образом объясняет мн. динамические закономерности вз-ствия с участием адронов. Именно это позволяет говорить о кварках как о реальных матер. образованиях внутри адронов. Эти эксперименты подтвердили наличие таких структурных единиц в адронах с приписываемыми им теорией квант. числами, включая «цвет» и дробный электрич. заряд. Кварки фактически приобрели статус новых Э. ч. и выступают в кач-ве претендентов на роль истинно Э. ч. для адронной формы материи. До длин =10-16 см кварки ведут себя как точечные, бесструктурные образования. Число известных видов кварков пока невелико, хотя не исключён нек-рый рост их числа. Ненаблюдаемость кварков в свободном состоянии даёт дополнит. основания предполагать, что они явл. теми ч-цами, к-рые замыкают цепь структурных составляющих в-ва.

Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный хар-р. Существуют теор. и эксперим. доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т. е. для отделения кварков друг от друга требуется бесконечно большая энергия, или, иначе, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц в-ва. Возможно, что кварки выступают как последняя ступень дробления адронной материи.

Элементарные частицы и квантовая теория поля.

Для описания св-в и вз-ствий Э. ч. в совр. теории существ. значение имеет понятие физ. поля, к-рое ставится в соответствие каждой ч-це. Поле есть специфич. форма распределённой в пр-ве материи; оно описывается ф-цией, задаваемой во всех точках пространства-времени (х) и обладающей определ. трансформац. св-вами по отношению к преобразованиям группы Лоренца (скаляр, спинор, вектор и т. д.) и групп «внутр.» симметрии (изотопич. скаляр, изотопич. спинор и т. д.). Эл.-магн. поле— исторически первый пример физ. поля. Поля, сопоставляемые с Э. ч., имеют квант. природу. Каждый квант поля и есть Э. ч. с общими для всех квантов данного поля массой и спином. Квантами эл.-магн. поля явл. фотоны, кванты др. полей соответствуют всем остальным известным Э. ч. Матем. аппарат квант. теории поля (КТП) позволяет описать рождение и уничтожение ч-цы в каждой пространственно-временной точке х.

Трансформац. св-ва поля определяют все квант. числа Э. ч. Трансформац. св-ва по отношению к преобразованиям группы Лоренца задают спин ч-ц: скаляру соответствует спин J=0, спинору -J=1/2, вектору -J=1 и т. д. Трансформац. св-ва полей по отношению к преобразованиям «внутр. пр-в» задают такие квант. числа Э. ч., как L, В, I, S С, b, а для кварков и глюонов (см. ниже) — «цвет». Масса Э. ч. не связана с трансформац. св-вами полей, это их дополнит. хар-ка.

Для описания процессов, происходящих с Э. ч., в КТП используется т. н. лагранжев формализм. В лагранжиане (точнее, плотности лагранжиана) ?, выражающемся через поля, заключены все сведения о динамике полей. Знание X позволяет в принципе, используя аппарат матрицы рассеяния (S-матрицы), рассчитывать вероятности переходов от одной совокупности ч-ц к другой под влиянием разл. вз-ствий. Лагранжиан X включает в себя лагранжиан ?0, описывающий поведение свободных полей, и лагранжиан вз-ствия ?вз, построенный из полей разных ч-ц и отражающий возможность взаимопревращений ч-ц. Знание ?вз явл. определяющим для описания процессов с Э. ч. Выбор возможного вида ?0 существ. образом определяется требованием релятивистской инвариантности. Критерии для нахождения вида ?вз (исключая давно известный вид ?вз для эл.-магн. процессов) были сформулированы в 50—70-х гг. при выяснении важной роли симметрии в определении динамики взаимодействующих полей. Существование той или иной симметрии вз-ствия устанавливается по наличию сохранения в процессах определ. физ. величин и соответствующих им квант. чисел. При этом точным квант. числам отвечает точная симметрия (т. е. симметрия всех классов вз-ствий), неточным квант. числам — симметрия лишь части вз-ствий (напр., сильного и эл.-магн.). Симметрия в сочетании с важным физ. требованием её соблюдения при произвольной зависимости преобразований группы симметрии от точки пространства-времени (локальная калибровочная инвариантность; Янг Чжэньнин, Р. Миллс, США, 1954 (см. КАЛИБРОВОЧНАЯ СИММЕТРИЯ), как оказалось, полностью задаёт вид =?вз. Требование локальной калибровочной инвариантности, физически связанное с тем, что вз-ствие не может мгновенно передаваться от точки к точке, удовлетворяется лишь в том случае, когда среди полей, входящих в лагранжиан, присутствуют векторные поля (аналоги эл.-магн. поля), взаимодействующие с полями Э. ч. вполне определ. образом, а именно:

?вз=Snr=1S3mjrm(x)Vrm(x) (1) (n — число калибровочных полей), где jrm(x) — токи, составленные из полей ч-ц и определяемые видом ?0, Vrm(х) — векторные поля, наз. калибровочными полями. Векторные поля в этом подходе выделяются как универс. переносчики вз-ствий. Св-ва векторных полей и их число определяются св-вами группы «внутр.» симметрии. Если симметрия точная, то масса кванта поля Vrm равна нулю. Для приближённой симметрии масса кванта векторного поля отлична от нуля.

На основании излож. принципов была определена форма Vкз для кварков, лежащая в основе совр. теории сильного вз-ствия — квантовой хромодинамики. Исходным здесь явилось предположение, что симметрия, отвечающая появлению квант. числа «цвет» у кварков (т. н. «цветная» SU(3)-симметрия), явл. точной. Из требования локальности этой симметрии вытекало существование восьми калибровочных полей Grm (отвечающих безмассовым квантам этих полей — глюонам), переносящих вз-ствие между кварками и связанными с ними выражением типа (1) (Й. Намбу, США, 1966). Имеющиеся эксперим. данные хорошо согласуются с видом лагранжиана для сильного вз-ствия, выведенным таким способом.

Использование принципа определяющей роли симметрии (в т. ч. приближённой) в формировании структуры вз-ствия позволило также найти форму лагранжиана слабого вз-ствия. Одновременно была вскрыта глубокая внутр. связь слабого и эл.-магн. вз-ствий. Существование пар лептонов с одинаковыми лептонными зарядами: е-, ve; m-, vm и т. д., но с разл. массами и электрич. зарядами было истолковано как отражение существования нарушенной симметрии типа изотопической (группа SUсл(2)), а факт сохранения спиральности в слабых процессах был связан с существованием особого «слабого гиперзаряда» Yсл, различающего лептоны левой и правой спиральности (группа U(1)). При этом для «левых» лептонов YLсл =-1, для «правых» — YRсл=-2. Такое введение слабого гиперзаряда и предположение, что изотопич. спин «левых» лептонов I=1/2, а «правых» -I=0, позволяют использовать для лептонов ту же ф-лу для электрич. заряда, что и для адронов: Q=I3сл+Yсл/2, где I3сл — третья проекция «слабого изотопич. спина» «левых» лептонов (I3=-1/2 для e-L и + 1/2 для vеL). Применение принципа локальности к симметрии, связанной с группой SUсл(2)XU(1), привело к характерному лагранжиану (1), в к-ром одновременно возникли члены, ответственные за эл.-магн. и слабое вз-ствия лептонов (амер. физики С. Вайнберг, Ш. Глэшоу, пакист. физик А. Садам; кон. 60-х гг.):ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ. Рис. 6

Здесь jэл.-м.m — эл.-магн. ток, jсл.з.m, jсл.н.m — заряженные токи и нейтральные токи слабого вз-ствия, построенные из полей лептонов, Аm — поле фотона, W+m, W-m и Z°m— поля массивных (из-за нарушенности симметрии) векторных ч-ц — переносчиков слабого вз-ствия (промежуточных векторных бозонов).

Излож. подход легко обобщается на эл.-магн. и слабое вз-ствия кварков (амер. физики Ш. Глэшоу, Дж. Илиопулос, итал. физик Л. Майани, 1970). Эксперимент показывает, что при не слишком высоких энергиях лагранжиан слабого вз-ствия (ф-ла (2)) с учётом обобщения на кварки правильно описывает эл.-магн. и слабое вз-ствия. В указанном подходе массы W± и Z° оцениваются соотв. в 84 ГэВ и 95 ГэВ. В 1983 эти бозоны с приведёнными значениями масс были экспериментально обнаружены в столкновениях пучков р и р=.

Единое описание эл.-магн. и слабого вз-ствий означает, что в теории исчезает как независимый параметр константа слабого вз-ствия. Единств. константой остаётся электрич. заряд е. Подавленность слабых процессов при небольших энергиях объясняется большой массой промежуточных бозонов.

Имеются попытки рассмотреть на общей основе не только эл.-магн. и слабое, но также и сильное вз-ствие. Исходным явл. предположение о единой природе всех видов вз-ствий Э. ч. (кроме гравитационного) с характерной одной малой константой. Наблюдаемые большие различия между вз-ствиями считаются обусловленными значит. нарушением симметрии при изуч. энергиях. Единая природа и высокая степень симметрии вз-ствия могут проявиться только при энергиях =1014 ГэВ в с. ц. и. Кварки и лептоны при таком рассмотрении оказываются однотипными объектами, и становятся возможными их взаимные превращения. Практически неизбежным следствием таких рассмотрений явл. предсказание нестабильности протона со временем жизни =1030— 1032 лет.

Развитие метода, позволяющего определить вид лагранжиана вз-ствия на основе использования св-в симметрии, явилось важным шагом на пути, ведущем к созданию динамич. теории Э. ч. Есть все основания полагать, что калибровочные теории поля явятся непременным составным элементом дальнейших теор. построений.

Некоторые общие проблемы теории элементарных частиц. Новейшее развитие физики Э. ч. явно выделило из всех Э. ч. группу ч-ц, к-рые существ. образом определяют специфику процессов микромира. Эти ч-цы — возможные кандидаты на роль истинно Э. ч. К их числу относятся ч-цы со спином 1/2 — лептоны и кварки, а также ч-цы со спином 1 — глюоны, фотон, массивные промежуточные бозоны, осуществляющие разные виды вз-ствий ч-ц со спином 1/2. В эту группу скорее всего следует также включить ч-цу со спином 2 — гравитон, квант гравитац. поля, связывающий все Э. ч. В этой схеме мн. вопросы, однако, требуют дальнейшего исследования. Неизвестно, каково полное число лентонов, кварков и разл. векторных ч-ц и существуют ли физ. принципы, определяющие это число. Не вполне ясны причины деления ч-ц со спином 1/2 на две группы: лептоны и кварки. Неясно происхождение «внутр.» квант. чисел лептонов и кварков (L, В, I, S, С, b) и такой хар-ки кварков и глюонов, как «цвет», и с какими степенями свободы они связаны. Неизвестны механизм, определяющий массы истинно У. ч., и причины появления (при нарушении исходной симметрии) у Э. ч. разл. классов вз-ствий с разл. св-вами симметрии. Эти и др. проблемы предстоит решить будущей теории Э. ч. Описание вз-ствий Э. ч., как отмечалось, связано с калибровочными теориями поля. Эти теории, позволяющие рассчитывать вероятности переходов с Э. ч., в настоящем своём виде обладают одним серьёзным недостатком, общим с квант. электродинамикой,— у них в процессе вычислений получаются не имеющие физ. смысла бесконечно большие значения для нек-рых физ. величин (расходимости). С помощью спец. приёма переопределения наблюдаемых величин (массы, заряда) — перенормировки (ренормировки) удаётся устранить бесконечности из окончат. результатов вычислений. Однако процедура перенормировки — чисто формальный обход трудности, существующей в аппарате теории, к-рая на каком-то уровне точности должна сказаться на степени согласия расчётов с измерениями.

Появление бесконечностей в вычислениях связано с тем, что в лагранжианах вз-ствий поля разных ч-ц отнесены к одной пространственно-временной точке, т. е. предполагается, что ч-цы точечные. Кроме того, предполагается, что четырёхмерное пространство-время остаётся непрерывным и плоским (не искривлённым) вплоть до самых малых расстояний. В действительности указанные предположения, по-видимому, неверны по неск. причинам: а) истинно Э. ч., очевидно, должны быть матер. объектами конечной протяжённости; б) св-ва пространства-времени в малом (в масштабах, определяемых фундаментальной длиной) должны | радикально отличаться от его макроскопич. св-в; в) на самых малых расстояниях (=10-33 см) сказывается изменение геом. св-в пространства-времени за счёт гравитации. Возможно, эти причины тесно связаны между собой (так, фундам. длина l0 может быть связана с гравитац. постоянной (G): l0=O(ћG/c3)»10-33 см). Любая из них должна привести к модификации теории и устранению бесконечностей, хотя практич. выполнение этой модификации может быть весьма сложным.

Особенно интересным представляется учёт влияния гравитации на малых расстояниях. Гравитац. вз-ствие может не только устранить расходимости в КТП, но и обусловливать само существование первообразующих материи (М. А. Марков, 1966). Если плотность в-ва истинно Э. ч. достаточно велика, гравитац. притяжение может явиться тем фактором, к-рый определяет устойчивое существование этих матер. образований. Их размеры должны быть =10-33 см. В большинстве экспериментов они будут вести себя как точечные объекты, их гравитац. вз-ствие будет ничтожно мало и проявится лишь на самых малых расстояниях, в области, где существенно изменяется геометрия пространства-времени.

Т. о., наметившаяся тенденция к одноврем. рассмотрению разл. классов вз-ствий Э. ч. скорее всего должна быть логически завершена включением в общую схему гравитац. вз-ствия (см. СУПЕРСИММЕТРИЯ). Именно на базе одноврем. учёта всех видов вз-ствий наиб. вероятно ожидать создания будущей теории Э. ч.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Элементарные частицы — Введение. Э. ч. в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Э. Большая советская энциклопедия
  2. элементарные частицы — ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ в узком смысле — частицы, которые нельзя считать состоящими из других частиц. В совр. физике термин "Э. ч." используют в более широком смысле: так наз. Химическая энциклопедия
  3. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ — ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ — мельчайшие известные частицы физической материи. Представления об элементарных частицах отражают ту степень в познании строения материи, которая достигнута современной наукой. Большой энциклопедический словарь