ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА

Источник когерентного оптич. излучения, в к-ром энергия мощной световой волны фиксированной частоты преобразуется в излучение более низкой частоты. Процесс преобразования осуществляется в нелинейной среде (в среде с нелинейной поляризацией) и имеет много общего с параметрич. возбуждением колебаний радиодиапазона. Параметрич. возбуждение в радиодиапазоне происходит в колебат. контуре при модуляции его параметров, обычно ёмкости. Периодич. изменение ёмкости с частотой накачки wн приводит к возбуждению в контуре колебаний с частотой wн/2 (см. ПАРАМЕТРИЧЕСКАЯ ГЕНЕРАЦИЯ И УСИЛЕНИЕ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИИ). Аналогично могут возбуждаться и световые колебания. Однако в этом случае параметрич. явления носят волн. характер и происходят не в контуре с нелинейным конденсатором, а в нелинейной среде. Последнюю можно представить в виде цепочки колебат. контуров с ёмкостью, модулированной бегущей световой волной. Световая волна большой интенсивности частоты wн (волна накачки), распространяясь в среде с квадратичной нелинейностью, модулирует её диэлектрическую проницаемость e (см. НЕЛИНЕЙНАЯ ОПТИКА). Если электрич. поле волны накачки

Eн=Eноsin(wнt-kr+jно),

где k — волновой вектор, jно — нач. фаза; r — пространств. координата точки, то e среды также изменяется по закону бегущей волны:

e=e0(1+msin(wнt-kнr+jно)).

Здесь m=4pcЕно/e0 — глубина модуляции диэлектрич. проницаемости, X — нелинейная диэлектрич. восприимчивость, характеризующая нелинейные св-ва среды, e0 — диэлектрич. проницаемость среды без накачки. В каждой точке среды, куда приходит волна накачки, возбуждаются световые колебания с частотами w1 и w2, связанные с wн соотношением: wн=w1+w2 (аналогично параметрич. возбуждению колебаний радиочастоты в двухконтурной системе). Волна накачки отдаёт им свою энергию наиболее эффективно, если во всей области вз-ствия волн между фазами волн сохраняется соотношение:

yн(r)=j1(r)+j2(r). (1)

Т. к. в бегущих волнах фазы изменяются в пр-ве по закону y(r)=-kr+j0, то из (1) следует т. н. условие фазового (или волнового) синхронизма:

kн=k1+k2. (2) Соотношение (2) означает, что волн. векторы волны накачки kн и возбуждаемых волн k1 и k2 образуют треугольник, причём kн?k1+k2. Равенство соответствует распространению волн в одном направлении.

При фазовом синхронизме амплитуды возбуждаемых волн по мере их распространения в глубь среды непрерывно увеличиваются:

E=E0exp(((m/2)?(k1k2)-d)x), (3)

где б — коэфф. затухания волны в обычной (линейной) среде, х — расстояние, проходимое световой волной в среде. Параметрич. возбуждение света происходит, если поле накачки превышает порог: Ено>(d/px)?(k1k2). Условие синхронизма (2) выполняется, если показатели преломления nн, n1 и n2 среды для частот wн, w1 и w2 удовлетворяют неравенству:

(nн-n1)w1+(nн-n2)w2?0. (4) В среде с норм. дисперсией, когда n увеличивается с ростом частоты w, параметрич. генерация света неосуществима, Т. К. nн>n1 и nн>n2.

Для выполнения условия синхронизма необходимо, чтобы среда обладала аномальной дисперсией — полной: nн

Такой средой могут служить анизотропные кристаллы, в к-рых могут распространяться два типа волн — обыкновенная о и необыкновенная в (см. КРИСТАЛЛООПТИКА, ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ). ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА

Рис. 1. Зависимость показателя преломления для обыкновенной n° и необыкновенной n волн в одноосном кристалле от частоты со в случае полной (о) и частичной (б) аномальной дисперсии.

Условие фазового синхронизма может быть осуществлено, если использовать зависимость показателя преломления необыкновенной волны nе в кристалле не только от частоты, но и от направления распространения. Напр., в одноосном отрицат. кристалле показатель преломления обыкновенной волны n° больше пе (волны накачки), зависящего от направления и распространения относительно оптич. оси кристалла. Если волн. векторы параллельны друг другу, то условию фазового синхронизма соответствует определ. направление в кристалле, вдоль к-рого:ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА. Рис. 2

ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА. Рис. 3

Рис. 2. а — условие синхронизма в нелинейном кристалле, qс — угол синхронизма; б — изменение длин волн. векторов необыкновенной волны накачки kн и обыкновенных волн k1 и k2 при повороте кристалла; в — зависимость частот (w1 и w2, для к-рых выполняется условие синхронизма, от q.

Угол qс между этим направлением и оптич. осью кристалла наз. углом синхронизма. Он зависит от частот накачки wн и одной из возбуждаемых волн w1 или w2. Изменяя угол q между направлением распространения волны накачки и оптич. осью кристалла, т. е. поворачивая кристалл, можно перестраивать частоту П. г. с. (рис. 2). Существуют и др. способы перестройки частоты П. г. с., связанные с зависимостью n от темп-ры, внеш. электрич. поля и т. д.

Нарастание амплитуд синхронно возбуждаемых волн с расстоянием по экспоненциальному закону (3) происходит в П. г. с. бегущей волны. Однако в таких П. г. с. достаточно большую мощность излучения на перестраиваемых частотах можно получить в очень протяжённых кристаллах диаметром порядка десятков или сотен см. Для увеличения мощности П. г. с. нелинейный кристалл помещают внутри оптического резонатора, благодаря чему волны пробегают кристалл многократно, т. е. за время действия импульса накачки увеличивается эфф. длина кристалла (рис. 3). В процессе возбуждения световых колебаний в резонаторном П. г. с. их амплитуды нарастают во времени до тех пор, пока от волны накачки не будет забираться значит. доля энергии. Перестройка частоты резонаторного П. г. с. происходит небольшими скачками, определяемыми разностью частот, соответствующих продольным модам резонатора.ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА. Рис. 4

Рис. 3. Схема резонаторного параметрич. генератора света: З1 и З2 — зеркала, образующие резонатор для обеих генерируемых волн или для одной из них.

Плавную перестройку частоты можно осуществить, комбинируя повороты кристалла, его нагрев, воздействие внеш. электрич. поля с изменением параметров резонатора. Существуют однорезонаторные схемы П. г. с., в к-рых резонатор имеется только для одной из возбуждаемых световых волн, и двухрезонаторные схемы П. г. с., где есть резонаторы для обеих возбуждаемых волн.

П. г. с. предложен в 1962 С. А. Ахмановым и Р. В. Хохловым. В 1965 созданы первые П. г. с. Джорджмейном и Миллером (США) и несколько позднее Ахматовым и Хохловым с сотрудниками. Источником накачки в П. г. с. служит лазер. Особое значение П. г. с. имеют для ИК области спектра. П. г. с. работают в диапазонах длин волн 1,45—4,2 мкм, 8—10 мкм и 16 мкм. П. г. с. обеспечивают перестройку частоты в пределах 10—20%. Уникальные хар-ки П. г. с.: когерентность излучения, узость спектр. линий, высокая мощность, плавная перестройка частоты — делают его одним из осн. приборов нелинейной спектроскопии (активная спектроскопия и др.), а также позволяют использовать его для селективного воздействия на в-во, в частности на биол. объекты.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА — ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЕТА (параметрический лазер) — генератор когерентного оптического излучения, в котором энергия мощной световой волны фиксированной частоты преобразуется в излучение более низких частот. Большой энциклопедический словарь