СТАТИКА

Раздел механики, предметом которого являются материальные тела, находящиеся в состоянии покоя при действии на них внешних сил. В широком смысле слова статика — это теория равновесия любых тел — твердых, жидких или газообразных. В более узком понимании данный термин относится к изучению равновесия твердых тел, а также нерастягивающихся гибких тел — тросов, ремней и цепей. Равновесие деформирующихся твердых тел рассматривается в теории упругости, а равновесие жидкостей и газов — в гидроаэромеханике.

См. ГИДРОАЭРОМЕХАНИКА.

Историческая справка. Статика — самый старый раздел механики; некоторые из ее принципов были известны уже древним египтянам и вавилонянам, о чем свидетельствуют построенные ими пирамиды и храмы. Среди первых создателей теоретической статики был Архимед (ок. 287-212 до н.э.), который разработал теорию рычага и сформулировал основной закон гидростатики. Родоначальником современной статики стал голландец С.Стевин (1548-1620), который в 1586 сформулировал закон сложения сил, или правило параллелограмма, и применил его в решении ряда задач.

Основные законы. Законы статики вытекают из общих законов динамики как частный случай, когда скорости твердых тел стремятся к нулю, но по историческим причинам и педагогическим соображениям статику часто излагают независимо от динамики, строя ее на следующих постулируемых законах и принципах: а) законе сложения сил, б) принципе равновесия и в) принципе действия и противодействия. В случае твердых тел (точнее, идеально твердых тел, которые не деформируются под действием сил) вводится еще один принцип, основанный на определении твердого тела. Это принцип переносимости силы: состояние твердого тела не изменяется при перемещении точки приложения силы вдоль линии ее действия.

Сила как вектор. В статике силу можно рассматривать как тянущее или толкающее усилие, имеющее определенные направление, величину и точку приложения. С математической точки зрения, это вектор, а потому ее можно представить направленным отрезком прямой, длина которого пропорциональна величине силы. (Векторные величины, в отличие от других величин, не имеющих направления, обозначаются полужирными буквами.)

Параллелограмм сил. Рассмотрим тело (рис. 1,а), на которое действуют силы F1 и F2, приложенные в точке O и представленные на рисунке направленными отрезками OA и OB. Как показывает опыт, действие сил F1 и F2 эквивалентно одной силе R, представленной отрезком OC. Величина силы R равна длине диагонали параллелограмма, построенного на векторах OA и OB как его сторонах; ее направление показано на рис. 1,а. Сила R называется равнодействующей сил F1 и F2. Математически это записывается в виде R = F1 + F2, где сложение понимается в геометрическом смысле слова, указанном выше. Таков первый закон статики, называемый правилом параллелограмма сил.

СТАТИКА Рис. 1. ПОСТРОЕНИЕ РАВНОДЕЙСТВУЮЩЕЙ двух (а, б) и нескольких (в, г) сил, приложенных в одной точке.

Равнодействующая сила. Вместо того чтобы строить параллелограмм OACB, для определения направления и величины равнодействующей R можно построить треугольник OAC, перенеся вектор F2 параллельно самому себе до совмещения его начальной точки (бывшей точки O) c концом (точкой A) вектора OA. Замыкающая сторона треугольника OAC будет, очевидно, иметь ту же величину и то же направление, что и вектор R (рис. 1,б). Такой способ отыскания равнодействующей можно обобщить на систему многих сил F1, F2, ..., Fn, приложенных в одной и той же точке O рассматриваемого тела. Так, если система состоит из четырех сил (рис. 1,в), то можно найти равнодействующую сил F1 и F2, сложить ее с силой F3, затем сложить новую равнодействующую с силой F4 и в результате получить полную равнодействующую R. Равнодействующая R, найденная таким графическим построением, представляется замыкающей стороной многоугольника сил OABCD (рис. 1,г). Данное выше определение равнодействующей можно обобщить на систему сил F1, F2, ..., Fn, приложенных в точках O1, O2, ..., On твердого тела. Выбирается точка O, называемая точкой приведения, и в ней строится система параллельно перенесенных сил, равных по величине и направлению силам F1, F2, ..., Fn. Равнодействующая R этих параллельно перенесенных векторов, т.е. вектор, представленный замыкающей стороной многоугольника сил, называется равнодействующей сил, действующих на тело (рис. 2). Ясно, что вектор R не зависит от выбранной точки приведения. Если величина вектора R (отрезок ON) не равна нулю, то тело не может находиться в покое: в соответствии с законом Ньютона всякое тело, на которое действует сила, должно двигаться с ускорением. Таким образом, тело может находиться в состоянии равновесия только при условии, что равнодействующая всех сил, приложенных к нему, равна нулю. Однако это необходимое условие нельзя считать достаточным — тело может двигаться, когда равнодействующая всех приложенных к нему сил равна нулю.

СТАТИКА. Рис. 2 Рис. 2. РАВНОДЕЙСТВУЮЩАЯ системы сил, действующих на твердое тело.

В качестве простого, но важного примера, поясняющего сказанное, рассмотрим тонкий жесткий стержень длиной l, вес которого пренебрежимо мал по сравнению с величиной приложенных к нему сил. Пусть на стержень действуют две силы F и -F, приложенные к его концам, равные по величине, но противоположно направленные, как показано на рис. 3,а. В этом случае равнодействующая R равна F — F = 0, но стержень не будет находиться в состоянии равновесия; очевидно, он будет вращаться вокруг своей средней точки O. Система двух равных, но противоположно направленных сил, действующих не по одной прямой, представляет собой "пару сил", которую можно характеризовать произведением величины силы F на "плечо" l. Значимость такого произведения можно показать путем следующих рассуждений, которые иллюстрируют правило рычага, выведенное Архимедом, и приводят к заключению об условии вращательного равновесия. Рассмотрим легкий однородный жесткий стержень, способный поворачиваться вокруг оси в точке O, на который действует сила F1, приложенная на расстоянии l1 от оси, как показано на рис. 3,б. Под действием силы F1 стержень будет поворачиваться вокруг точки O. Как нетрудно убедиться на опыте, вращение такого стержня можно предотвратить, приложив некоторую силу F2 на таком расстоянии l2, чтобы выполнялось равенство F2l2 = F1l1.

СТАТИКА. Рис. 3 Рис. 3. ПАРА СИЛ (а) и рычаг (б) в схематическом виде.

Таким образом, вращение можно предотвратить бесчисленными способами. Важно лишь выбрать силу и точку ее приложения так, чтобы произведение силы на плечо было равно F1l1. Это и есть правило рычага. Нетрудно вывести условия равновесия системы. Действие сил F1 и F2 на ось вызывает противодействие в виде силы реакции R, приложенной в точке O и направленной противоположно силам F1 и F2. Согласно закону механики о действии и противодействии, величина реакции R равна сумме сил F1 + F2. Следовательно, равнодействующая всех сил, действующих на систему, равна F1 + F2 + R = 0, так что отмеченное выше необходимое условие равновесия выполняется. Сила F1 создает крутящий момент, действующий по часовой стрелке, т.е. момент силы F1l1 относительно точки O, который уравновешивается действующим против часовой стрелки моментом F2l2 силы F2. Очевидно, что условием равновесия тела является равенство нулю алгебраической суммы моментов, исключающее возможность вращения. Если сила F действует на стержень под углом q, как показано на рис. 4,а, то эту силу можно представить в виде суммы двух составляющих, одна из которых (Fp), величиной F cosq, действует параллельно стержню и уравновешивается реакцией опоры -Fp, а другая (Fn), величиной F sinq, направлена под прямым углом к рычагу. В этом случае крутящий момент равен Fl sinq; он может быть уравновешен любой силой, которая создает равный ему момент, действующий против часовой стрелки.

СТАТИКА. Рис. 4 Рис. 4. РЫЧАГ в случае силы, действующей под углом (а), и пояснение к определению векторного произведения (б).

Чтобы проще было учитывать знаки моментов в тех случаях, когда на тело действует много сил, момент силы F относительно любой точки O тела (рис. 4,б) можно рассматривать как вектор L, равный векторному произведению rґF вектора положения r на силу F. Таким образом, L = r*F. Нетрудно показать, что если на твердое тело действует система сил, приложенных в точках O1, O2, ..., On (рис. 5), то эту систему можно заменить равнодействующей R сил F1, F2, ..., Fn, приложенной в любой точке O' тела, и парой сил L, момент которых равен сумме [[r1*F1]] + [[r2*F2]] + ... + [[rn*Fn]]. Чтобы убедиться в этом, достаточно мысленно приложить в точке O' систему пар равных, но противоположно направленных сил F1 и -F1; F2 и -F2; ...; Fn и -Fn, что, очевидно, не изменит состояния твердого тела.

СТАТИКА. Рис. 5 Рис. 5. УСЛОВИЯ РАВНОВЕСИЯ твердого тела.

Но сила F1, приложенная в точке O1, и сила -F1, приложенная в точке O', образуют пару сил, момент которых относительно точки O' равен r1*F1. Точно так же силы F2 и -F2, приложенные в точках O2 и O' соответственно, образуют пару с моментом r2*F2, и т.д. Суммарный момент L всех таких пар относительно точки O' дается векторным равенством L = [[r1*F1]] + [[r2*F2]] + ... + [[rn*Fn]]. Остальные силы F1, F2, ..., Fn, приложенные в точке O', в сумме дают равнодействующую R. Но система не может находиться в равновесии, если величины R и L отличны от нуля. Следовательно, условие равенства нулю одновременно величин R и L является необходимым условием равновесия. Можно показать, что оно же является и достаточным, если тело первоначально покоится. Итак, задача о равновесии сводится к двум аналитическим условиям: R = 0 и L = 0. Эти два уравнения представляют собой математическую запись принципа равновесия. Теоретические положения статики широко применяются при анализе сил, действующих на конструкции и сооружения. В случае непрерывного распределения сил суммы, которые дают результирующий момент L и равнодействующую R, заменяются интегралами и в соответствии с обычными методами интегрального исчисления.

См. также

МЕХАНИКА;

ПРОЧНОСТНОЙ РАСЧЕТ КОНСТРУКЦИИ.

ЛИТЕРАТУРА

Смокотин Г.Я. Курс лекций по статике. Томск, 1984 Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М., 1986 Бабенков И.С. Основы статики и сопротивления материалов. М., 1988

Источник: Энциклопедия Кольера на Gufo.me


Значения в других словарях

  1. СТАТИКА — (от греч. statike — учение о весе, о равновесии), раздел механики, посвящённый изучению условий равновесия материальных тел под действием сил. С. разделяют на геометрическую и аналитическую. В основе аналитич. Физический энциклопедический словарь
  2. Статика — (от греч. statike — учение о весе, о равновесии) раздел механики, посвященный изучению условий равновесия материальных тел под действием сил. С. разделяют на геометрическую и аналитическую. В основе аналитической... Большая советская энциклопедия
  3. статика — -и, ж. 1. Раздел механики, изучающий условия равновесия тел под действием сил. 2. Отсутствие движения, неподвижность. || перен. Отсутствие развития, неизменность в чем-л. Нет никакой статики в нашей жизни. Малый академический словарь
  4. Статика — Раздел механики, в к-ром изучается равновесие материальных тел, находящихся под действием сил, и условия эквивалентности систем сил. Равновесие изучается по отношению к системе отсчета, в к-рой определены все силы, действующие на материальные тела (напр. Математическая энциклопедия
  5. статика — орф. статика, -и Орфографический словарь Лопатина
  6. статика — Ста́т/ик/а. Морфемно-орфографический словарь
  7. статика — СТАТИКА Раздел механики, в котором изучаются условия равновесия тел под действием сил. (Терминология спорта. Толковый словарь спортивных терминов, 2001) Словарь спортивных терминов
  8. статика — ДВИЖЕНИЕ — ПОКОЙ Состояние движения — состояние покоя. Находиться в движении — находиться в покое. ○ Ничто в природе не находится в покое, движение — одно из условий существования. Тендряков. Покушение на миражи. Покой таит в себе движенье. Словарь антонимов русского языка
  9. статика — СТ’АТИКА, статики, мн. нет, ·жен. (·греч. statike-равновесие). 1. Отдел теоретической механики, учение об условиях равновесия тел (мех.). 2. Состояние покоя для данного момента; ант. динамика во 2 ·знач. (научн.). Толковый словарь Ушакова
  10. статика — СТАТИКА -и; ж. [греч. statikē] 1. Раздел механики, изучающий условия равновесия тел под действием сил. С. твёрдого тела. С. жидкостей. С. газов. 2. Отсутствие движения, неподвижность (противоп.: динамика). Изобразить лицо в статике. Толковый словарь Кузнецова
  11. статика — СТАТИКА ж. греч. начала механики, наука о равновесии, покое. статический, к ней относящ. Статистика наука о силе и богатстве государства, о состоянии его в данную пору; история и география в известный срок. Статистический, к сему относящ. Толковый словарь Даля
  12. Статика — Состояние покоя, неизменности культуры. Словарь по культурологии
  13. статика — Статики, мн. нет, ж. [греч. statike – равновесие]. 1. Отдел теоретической механики, учение об условиях равновесия тел (мех.). 2. Состояние покоя для данного момента; противоп. динамика (науч.). Большой словарь иностранных слов
  14. СТАТИКА — СТАТИКА (греч. statike) — раздел механики, в котором изучаются условия равновесия тел под действием сил. Кроме статики твердого тела различают статику жидкостей (гидростатику) и статику газов (аэростатику). Большой энциклопедический словарь
  15. статика — статика I ж. 1. Раздел теоретической механики, изучающий законы равновесия тел. 2. Равновесие тел под действием приложенных к ним сил (в физике). II ж. 1. Отсутствие движения, состояние покоя; неподвижность. 2. перен. Отсутствие развития. Толковый словарь Ефремовой
  16. Статика — Представляет собой тот отдел механики, в котором рассматриваются условия равновесия сил, приложенных к телу. При равновесии сил требуется, чтобы ни одна точка тела не имела ускорения. Энциклопедический словарь Брокгауза и Ефрона
  17. статика — СТАТИКА, и, ж. 1. Раздел механики, изучающий законы равновесия тел под действием приложенных к ним сил. С. и динамика. С. твёрдого тела. С. жидкостей. С. газов. 2. Состояние покоя в какой-н. определённый момент (книжн.). Описывать явление в статике. | прил. статический, ая, ое. Толковый словарь Ожегова