твердое тело

ТВЕРДОЕ ТЕЛО

агрегатное состояние вещества, отличит. признаками которого при нормальных условиях являются устойчивость формы и характер теплового движения структурных единиц Т. т. (атомов, ионов, молекул), совершающих малые колебания относительно некоторых фиксир. положений равновесия.

Свойства Т. т. определяются их хим. составом и зависят от характера межатомных связей, типа кристаллич. структуры и степени структурного совершенства, а также от фазового состава. В зависимости от количества образующих их элементов Т. т. можно подразделить на простые (однокомпонентные) и сложные (многокомпонентные), которые, в свою очередь, могут представлять собой хим. соединения (неорг. или орг.) либо твердые растворы разл. типа (замещения, внедрения).

Межатомные связи в Т. т. осуществляются в результате взаимод. атомов (ионов) и валентных электронов, связь между атомами м. б. ионной, ковалентной, металлич. (см. химическая связь), а также ван-дер-ваальсовой, водородной. Для многих Т. т. характерен смешанный тип хим. связи.

Т. т. бывают кристаллич. и аморфные. Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц, симметрией кристаллич. решетки (свойством отдельных узлов решетки совмещаться при транс-ляц. перемещении). Совокупность отдельных узлов решетки образует т. наз. решетку Браве (см. кристаллы, кристаллическая структура).

Кристаллические Т. т. могут быть в виде монокристаллов или поликристаллов. В большинстве областей техники используют поликристаллические Т. т., монокристаллы находят применение в электронике, производстве оптич. приборов, ювелирных изделий и т. д. Структурно-чувствит. свойства Т. т., связанные с перемещением частиц и квазичастиц, а также магнитных и электрич. доменов и др. существенно зависят от типа и концентрации дефектов кристаллич. решетки. Равновесные собств. точечные дефекты (напр., вакансии, межузельные атомы) термодинамически обусловлены и играют важную роль в процессах диффузии и самодиффузии в Т. т. Это используется в процессах гомогенизации, рекристаллизации, легирования и др. Ряд практически важных свойств Т. т. зависит от др. видов структурных дефектов, имеющихся в кристаллах,-дислокаций, малоугловых и межзеренных границ, включений и т. д.

Для аморфного состояния Т. т. характерно наличие только ближнего порядка; оно термодинамически неустойчиво, однако при обычных температурах переход в кристаллич. состояние обычно не реализуется и может осуществляться лишь при нагреве. Аморфные Т. т., в отличие от большинства кристаллических, изотропны.

По фазовому составу Т. т. разделяются на однофазные и многофазные. Форма и распределение фазовых составляющих могут оказывать сильное влияние на разл. свойства многофазных Т. т. К наиб. важным в практич. отношении свойствам Т. т. относят мех., электрич., тепловые, магнитные, оптические.

Механические свойства Т. т. — упругость, пластичность (см. реология), твердость, хрупкость, прочность-характеризуют их способность сопротивляться деформации и разрушению при воздействии внеш. напряжений. Для большинства Т. т. (за исключением некоторых полимерных материалов типа каучука) упругая деформация линейно зависит от величины приложенных напряжений (Гука закон). В монокристаллах и текстурир. поликристаллах упругая деформация анизотропна. Т. т. с металлич. типом хим. связи обычно более пластичны в сравнении с Т. т., имеющими ионный тип связи, и в большинстве случаев при больших напряжениях испытывают вязкое разрушение (тогда как вторые — обычно хрупкое). Пластичность Т. т. возрастает с повышением температуры.

Электрич. свойства Т. т., как и многие др. физ. свойства, объясняются на основе квантовомех. представлений, приведших к разработке зонной теории. Эта теория описывает энергетич. спектр электронов, движущихся в периодич. поле кристаллич. решетки. В результате сближения изолир. атомов при образовании Т. т. их электронные оболочки перекрываются и дискретные энергетич. уровни электронов атома расщепляются на ряд близко расположенных уровней с квазинепрерывным энергетич. спектром, образуя таким образом зоны разрешенных энергий, или разрешенные зоны. Эти зоны м. б. разделены зонами запрещенных энергий (запрещенные зоны), но могут и перекрываться, если в изолир. атомах расстояния между соответствующими уровнями малы. Ширина разрешенной зоны тем больше, чем больше расщепление уровня, т. е. чем слабее электрон связан с ядром.

Количеств. оценку энергетич. спектра электронов в кристалле получают на основе приближенного решения уравнения Шрёдингера. Если принять, что перекрывание волновых функций электронов происходит лишь для соседних атомов кристалла, для одномерного случая зависимость энергии электрона Еэ от волнового вектора электрона к описывается выражением вида: Еэ = ђ2к2/2т, где ђ — постоянная Планка, m-масса электрона, к = 2π/λ, λ-длина волны электрона. Для трехмерного случая пользуются проекциями волнового вектора на оси координат: кх,ку,кz. Границы разрешенных энергетич. зон определяют исходя из представлений о дифракции электронов, движущихся в поле периодич. потенциала кристаллич. решетки. Условие отражения электронов от кристаллич. плоскостей описывается уравнением Вульфа — Брэгга: nλ = 2a sinq, где n = 1,2,3,..., a-период кристаллич. решетки, q-угол падения электрона на плоскость. Области значений к, в пределах которых энергия электронов изменяется непрерывно, а на границах претерпевает разрыв, наз. зонами Бриллюэна. Они определяют границы между разрешенными и запрещенными зонами энергий и лежат в пределах к = b nπ/α.

Заполнение разрешенных зон электронами в Т. т. происходит последовательно в порядке возрастания энергетич. уровней в зонах. Согласно принципу Паули для Т. т., содержащего N атомов, в каждой энергетич. зоне могут находиться 2N электронов. Вероятность заполнения уровня с энергией E определяется соотношением Ферми-Дирака: f = 1/{1 + ехр[(EEF)/kT]}, где k — константа Больцмана, EF-уровень Ферми-энергетич. уровень, вероятность заполнения которого при Т. 0 К равна 0,5 (м. б. интерпретирован как хим. потенциал электрона). Изоэнергетич. поверхность, соответствующая ЕF, наз. Ферми-поверхностью. В зависимости от числа валентных электронов верхняя из заполненных зон (в а-лентная зона) м. б. занята полностью или частично. Степень заполнения валентной зоны электронами играет важную роль в формировании электрич. свойств Т.т., т. к. электроны полностью заполненной зоны не переносят ток.

Зонная теория справедлива для кристаллических Т. т. В случае аморфных Т. т. вследствие разупорядоченности их структуры разработка строгой теоретич. зонной модели сталкивается со значит. трудностями. Обычно оперируют понятием квазизапрещенных зон, разделяющих разрешенные зоны, края которых вследствие возмущений, вызванных структурной разупорядоченностью, в сравнении с кристаллическим Т. т. несколько сдвигаются и размываются.

Электрич. проводимость σ Т. т. определяется в первую очередь характером заполнения электронами энергетич. зон (см. рис.). Т. т. с металлич. типом хим. связи (металлы) характеризуются высокой степенью обобществления валентных электронов (электронов проводимости), перекрыванием разрешенных энергетич. зон и частичным заполнением разрешенных зон электронами. Такие Т. т. являются хорошими проводниками. В отличие от них полупроводники и диэлектрики при Т=0 К имеют полностью заполненные либо пустые, неперекрывающиеся, разрешенные зоны. Для диэлектриков характерны большие значения ширины запрещенной зоны ΔE между валентной (заполненной) и незаполненной зоной (зоной проводимости), вследствие чего в обычных условиях они практически не содержат своб. электронов и не проводят электрич. ток. Полупроводники, принципиально не отличаясь от диэлектриков по зонному строению, имеют меньшую ширину запрещенной зоны (условной границей между ними принято считать значение ΔE = 3 эВ). Вследствие теплового возбуждения при обычных температурах часть валентных электронов переходит в зону проводимости (электроны проводимости), поэтому полупроводники, как правило, имеют промежуточную между металлами и диэлектриками σ (10−8твердое телоσтвердое тело. Рис. 2104 См∙см−1). Известны т. наз. бесщелевые полупроводники с ΔE = 0. Т. т. с аномально малым перекрытием разрешенных зон (напр., Sb, Bi) относят к полуметаллам.

твердое тело. Рис. 3

Схема заполнения зон в диэлектриках и полупроводниках (а), металлах (б) и полуметаллах (в).

В общем случае величина σ Т. т. зависит от механизма рассеяния носителей заряда, которое может происходить на тепловых колебаниях атомов (ионов), нейтральных и заряженных собств. и примесных точечных дефектах, линейных, поверхностных и объемных дефектах кристаллич. решетки. В случае металлов σ имеет электронную природу и подчиняется закону Ома. Для металлов характерно уменьшение σ с температурой. В отличие от металлов у полупроводников с повышением температуры σ увеличивается вследствие значит. возрастания концентрации своб. носителей заряда. В диэлектриках осн. носители заряда-ионы, вследствие чего σ сопровождается переносом вещества. Электронная проводимость диэлектриков возникает лишь при высоких электрич. напряжениях, близких к пороговым и соответствующих пробою. Как и в полупроводниках, σ возрастает с повышением температуры.

При низких температурах вблизи 0 К мн. металлы (и неметаллы) переходят в сверхпроводящее состояние (см. сверхпроводники), которое проявляется в полной потере электрич. сопротивления, а также в аномальных магн. свойствах. Такой переход связан с электрон-фононным взаимодействием. Для Т. т. σ может изменяться и под действием др. внеш. воздействий (напр., давления, облучений). В наиб. степени к этим воздействиям чувствительны полупроводники, благодаря чему их используют для изготовления разл. датчиков.

Важная характеристика диэлектриков-диэлектрич. проницаемость ε, характеризующая ослабление силы электро-статич. взаимодействия зарядов в диэлектрике в сравнении с вакуумом. Она связана с поляризацией Т. т. при приложении внеш. электрич. поля. Для некоторых диэлектриков характерно возникновение спонтанной поляризации (см. сегнетоэлектрики). Возможно также возникновение поляризации под действием упругой деформации, вызывающее пьезоэф-фект, противоположное явление — обратный пьезоэффект (см. пьезоэлектрики). Указанные эффекты лежат в основе практич. использования соответствующих диэлектриков в пьезотехнике, акустоэлектронике.

Тепловые свойства Т. т. (см. теплообмен) находят объяснение на основе динамич. теории кристаллич. решеток, в соответствии с которой решетка представляет совокупность связанных квантовых осцилляторов разл. частоты. Квант колебат. энергии представляется в виде фонона-квазичастицы, соответствующей волне смещения атомов (ионов) и молекул кристалла из положений равновесия. Энергия фонона Eф = ђv, его импульс p = ђq, где v-частота колебаний, q-волновой вектор акустич. волны, соответствующей данному фонону. Среднее число фононов с энергией Еф изменяется с температурой в соответствии со статистикой Бозе-Эйнштейна: твердое тело. Рис. 4Из энергий фононов складывается общая тепловая энергия Т. т. (за исключением энергии, которой оно может обладать при О К). Фононы взаимод. между собой, с др. частицами и квазичастицами, а также с дефектами кристаллич. решетки Т. т. Вследствие этого они часто играют роль внутр. термостата, поглощая избыточную энергию возбужденных частиц и квазичастиц в процессах релаксации. Макроскопич. свойства Т. т. описываются на основе представлений о газе фононов. Для аморфных Т. т. понятие фонона удается ввести только для низкочастотных акустич. колебаний, слабочувствительных к ближнему порядку в расположении структурных единиц Т. т.

Теплоемкость Т. т. при высоких температурах определяется законами классич. статистич. механики, при низких-квантовой механики. Условной границей, разделяющей сферу действия этих законов, является температура Дебая qD. Величина qD индивидуальна для каждого вещества (для большинства Т. т. qD = = 102–103 К).

Тепловое расширение Т. т. связано с энгармонизмом тепловых колебаний атомов. Коэф. теплового расширения α тем меньше, чем прочнее межатомные связи в Т. т. В кристаллических Т. т. с несимметричной структурой коэф. α анизотропен.

Теплопроводность к Т. т. в общем случае складывается в осн. из электронной и фононной составляющих. Вклад каждой из них зависит от природы Т. т. В металлах осн. роль в переносе тепла при обычных температурах играют электроны проводимости. В диэлектриках тепловая энергия передается преим. фононами и к пропорциональна теплоемкости вещества, средней скорости и средней длине своб. пробега фононов. В полупроводниках преобладание того или иного механизма теплопроводности определяется наличием, типом и концентрацией примесей и, как и в др. Т. т., к зависит от состояния кристаллич. решетки (аморфное, моно- или поли-кристаллич.) и наличия структурных дефектов.

Магн. свойства Т. т. (см. магнетохимия, магнитная восприимчивость, магнитные материалы) определяются наличием или отсутствием у частиц, образующих Т. т., магн. моментов. Осн. роль в формировании магн. свойств Т. т. играют электроны благодаря наличию у них спиновых магн. моментов (т. наз. магнетон Бора). Дополнит. небольшой вклад в образование магн. моментов м. б. связан со спином нуклонов и орбитальным движением электронов. По магн. свойствам Т. т. разделяются на парамагнетики, диамагнетики, ферромагнетики, антиферромагнетики и фёрримагнетики .

Оптич. свойства Т. т. (см. оптические материалы) определяются характером взаимод. электромагн. поля с веществом. Поглощение излучения обусловлено переходом частиц, образующих Т. т., в возбужденное состояние. С обратным переходом частиц из возбужденного состояния в невозбужденное связана люминесценция. Коэф. поглощения зависит от длины волны излучения и природы Т. т.

Для металлов, имеющих высокую концентрацию своб. электронов, свойственны высокие коэф. отражения излучения в широком спектральном диапазоне. Это связано с тем, что б. ч. энергии, приобретенной своб. электронами поверхностного слоя металла, расходуется на генерацию вторичных волн, сложение которых образует отраженную волну.

Вследствие того что электроны проводимости в металлах могут поглощать сколь угодно малые кванты электромагн. энергии, при взаимодействии внеш. электромагн. поля с электронами в тонком поверхностном слое металла индуцируются токи (скин-эффект). Они играют экранирующую роль и приводят к резкому (экспоненциальному) затуханию волны внутри металла.

В полупроводниках и диэлектриках в зависимости от длины волны падающего злектромагн. излучения поглощение связано с одним из след. осн. механизмов: 1) собств. (фундаментальное) поглощение, вызванное возбуждением электронов из валентной зоны в зону проводимости; 2) экситонное поглощение, обусловленное образованием возбужденного состояния-связанной пары электрон — дырка; 3) поглощение своб. носителями заряда; 4) поглощение на дефектах кристаллич. решетки. Для кристаллического Т. т. (за исключением кристаллов кубич. сингонии) характерна анизотропия оптич. свойств, вызывающая такие явления, как поляризация света, двойное лучепреломление.

Процессы взаимодействия Т. т. с электромагн. излучением лежат в основе использования их для изготовления элементов оптич. приборов и систем, источников и приемников излучения и др.

Лит.: Ван Флек Л., Теоретическое и прикладное материаловедение, пер. с англ., М-, 1975; Постников В. С., Физика и химия твердого состояния, М., 1978; Горелик С. С, Дашевский М. Я., Материаловедение полупроводников и диэлектриков, М., 1988.

Р. Х. Акчурин

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. ТВЕРДОЕ ТЕЛО — ТВЕРДОЕ ТЕЛО — агрегатное состояние вещества, отличающееся стабильностью формы и характером теплового движения атомов, которые совершают малые колебания вокруг положений равновесия. Различают кристаллические и аморфные твердые тела. Большой энциклопедический словарь
  2. Твердое тело — в теоретической механике. — В статье Движение (см.) было упомянуто, что в теоретической механике твердые тела предполагаются идеально твердыми, так что расстояния между точками одного и того же тела предполагаются неизменными... Энциклопедический словарь Брокгауза и Ефрона