Уравнение

Уравне́ние

В математике, аналитическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются обычно неизвестными, а значения неизвестных, при которых значения функций равны, – решениями (корнями); о таких значениях неизвестных говорят, что они удовлетворяют данному У. Например, 3x – 6 = 0 является У. с одним неизвестным, а х = 2 есть его решение; x2 + y2 = 25 является У. с двумя неизвестными, а х = 3, y = 4 есть одно из его решений. Совокупность решений данного У. зависит от области М значений, допускаемых для неизвестных. У. может не иметь решений в М, тогда оно называется неразрешимым в области М. Если У. разрешимо, то оно может иметь одно или несколько, или даже бесконечное множество решений. Например, У. x4 4 = 0 неразрешимо в области рациональных чисел, но имеет два решения:

x1 = √2, x2 = –√2 в области действительных чисел и четыре решения: x1 = √2, x2 = –√2, x3 = i Уравнение , x4 = – Уравнение. Рис. 2 в области комплексных чисел. У. sinx = 0 имеет бесконечное множество решений: xk = kπ (k = 0, ± 1, ± 2,...) в области действительных чисел. Если У. имеет решениями все числа области М, то оно называется тождеством в области М. Например, У. х = Уравнение. Рис. 3 является тождеством в области неотрицательных чисел и не является тождеством в области действительных чисел.

Совокупность У., для которых требуется найти значения неизвестных, удовлетворяющие одновременно всем этим У., называется системой У.; значения неизвестных, удовлетворяющих одновременно всем У. системы, – решениями системы. Например, х + 2y = 5, 2x + у – z = 1 является системой двух У. с тремя неизвестными; одним из решений этой системы является х = 1, у = 2, z = 3.

Две системы У. (или два У.) называются равносильными, если каждое решение одной системы (одного У.) является решением др. системы (другого У.), и наоборот, причём обе системы (оба У.) рассматриваются в одной и той же области (см. Равносильные уравнения). Например, У. х – 4 = 0 и 2x – 8 = 0 равносильны, т.к. решением обоих У. является лишь х = 4. Всякая система У. равносильна системе вида fk (x1, x2,..., хп) = 0, где k = 1, 2,... Процесс разыскания решений У. заключается обычно в замене У. равносильным. В некоторых случаях приходится заменять данное У. другим, для которого совокупность решений шире, чем у данного У. Решения нового У., не являющиеся решениями данного У., называются посторонними решениями (см. Посторонний корень).

Например, возводя в квадрат У. Уравнение. Рис. 4 , получают У. x — 3 = 4, решение которого х = 7 является посторонним для исходного У. Поэтому, если при решении У. делались действия, могущие привести к появлению посторонних решений (например, возведение У. в квадрат), то все полученные решения преобразованного У. проверяют подстановкой в исходное У.

Наиболее изучены У., для которых функции fk являются многочленами от переменных x1, x2,..., хп, – алгебраические У. Например, алгебраическое У. с одним неизвестным имеет вид:

a0xn + a1xn-1 +... + an = 0 (a0 ≠ 0); (*)

число n называется степенью У. Решение алгебраич. У. было одной из важнейших задач алгебры в 16–17 вв., когда были получены формулы и методы решения алгебраических У. 3-й и 4-й степеней (см. Алгебра, Кардано формула) (правила решения алгебраических У. 1-й и 2-й степеней были известны ещё в глубокой древности). Для корней У. 5-й и высших степеней общей формулы не существует, поскольку эти У., вообще говоря, не могут быть решены в радикалах (Н. Абель, 1824). Вопрос о разрешимости алгебраических У. в радикалах привёл (около 1830) Э. Галуа к общей теории алгебраических У. (см. Галуа теория).

Каждое алгебраическое У. всегда имеет хотя бы одно решение, действительное или комплексное. Это составляет содержание т. н. основной теоремы алгебры, строгое доказательство которой впервые было дано К. Гауссом в 1799. Если α – решение У. (*), то многочлен a0xn + a1xn-1 +... + an делится на х – α. Если он делится на (х – α) k, но не делится на (х – α) k+1, то решение α имеет кратность k. Число всех решений У. (*), если каждое считать столько раз, какова его кратность, равно n.

Если f (x) трансцендентная функция (См. Трансцендентные функции), то У. f (x) = 0 называются трансцендентным (см., например, Кеплера уравнение), причём в зависимости от вида f (x) оно называется тригонометрическим У., логарифмическим У., показательным У. Рассматриваются также иррациональные У., то есть У., содержащие неизвестное под знаком радикала. При практическом решении У. обычно применяются различные приближённые методы решения У.

Среди систем У. простейшими являются системы линейных У., то есть У., в которых fk суть многочлены первых степеней относительно x1, x2,..., хп (см. Линейное уравнение).

Решение системы У. (не обязательно линейных) сводится, вообще говоря, к решению одного У. при помощи т. н. исключения неизвестных (см. также Результант).

В аналитической геометрии одно У. с двумя неизвестными интерпретируется при помощи кривой на плоскости, координаты всех точек которой удовлетворяют данному У. Одно У. с тремя неизвестными интерпретируется при помощи поверхности в трёхмерном пространстве. При этой интерпретации решение системы У. совпадает с задачей о разыскании точек пересечения линий, поверхностей и т.д. У. с большим числом неизвестных интерпретируются при помощи многообразий в n-мерных пространствах.

В теории чисел рассматриваются неопределенные У., то есть У. с несколькими неизвестными, для которых ищутся целые или же рациональные решения (см. Диофантовы уравнения). Например, целые решения У. x2 + y2 = z2 вид х = m2-n2, у = 2 mn, z = m2 + n2 где m и n – целые числа.

С наиболее общей точки зрения, У. является записью задачи о разыскании таких элементов некоторого множества А, что F (a) = Ф (а), где F и Ф – заданные отображения (См. Отображение) множества А в множество В. Если множества А и В являются множествами чисел, то возникают У. рассмотренного выше вида. Если А и В – множества точек в многомерных пространствах, то получаются системы У., если же A и В – множества функций, то в зависимости от характера отображения могут получаться также Дифференциальные уравнения, Интегральные уравнения и др. виды У. Наряду с вопросами нахождения решения У. в общей теории У. различного вида изучаются вопросы существования и единственности решения, непрерывной зависимости его от тех или иных данных и т.д.

Термин «У.» употребляется (в отличном от указанного выше смысле) и в др. естественных науках, см., например, Уравнение времени (в астрономии), Уравнение состояния (в физике), Уравнения химические, Максвелла уравнения в электродинамике, Кинетическое уравнение Больцмана в теории газов.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. уравнение — -я, ср. 1. Действие по знач. глаг. уравнять и состояние по знач. глаг. уравняться. — Первее всего — полное уравнение в правах. М. Горький, Жизнь Матвея Кожемякина. Малый академический словарь
  2. Уравнение — Аналитическая запись задачи о разыскании значений аргументов, при к-рых значения двух данных функций равны. Аргументы, от к-рых зависят эти функции, наз. Математическая энциклопедия
  3. уравнение — орф. уравнение, -я Орфографический словарь Лопатина
  4. уравнение — У/равн/е́ни/е [й/э]. Морфемно-орфографический словарь
  5. уравнение — уравнение , -я Орфографический словарь. Одно Н или два?
  6. уравнение — 1. математическое равенство с одной или несколькими неизвестными величинами (числами или функциями), верное только для определенных наборов этих величин; 2. одинаковое, равное. Большой бухгалтерский словарь
  7. УРАВНЕНИЕ — УРАВНЕНИЕ, математическое утверждение, справедливое для некоторого подмножества всех возможных значений переменной величины. Например, уравнение вида х2=8-2х верно только для определенных значений х (х=2 и х=-4). Научно-технический словарь
  8. уравнение — УРАВНЕНИЕ -я; ср. 1. к Уравнять и Уравняться. У. опор. У. окладов. У. прав. 2. Математическое равенство, содержащее одну или несколько неизвестных величин и сохраняющее свою силу только при определённых значениях этих неизвестных величин. Толковый словарь Кузнецова
  9. уравнение — УРАВНЕНИЕ, я, ср. 1. см. уравнять. 2. Математическое равенство с одной или несколькими неизвестными величинами (числами или функциями), верное только для определённых наборов этих величин. Квадратное у. Дифференциальное у. Толковый словарь Ожегова
  10. уравнение — УРАВН’ЕНИЕ, уравнения, ср. 1. Действие по гл. уравнять — уравнивать и состояние по гл. уравняться — уравниваться. Уравнение в правах. Уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке; астр. Толковый словарь Ушакова
  11. Уравнение — Соединение данных чисел при помощи знаков различных действий наз. алгебраическим выражением. Напр. (2×7 + 1)/3. Если выполнить указанные действия, то в результате получим... Энциклопедический словарь Брокгауза и Ефрона
  12. УРАВНЕНИЕ — УРАВНЕНИЕ — математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются неизвестными, а значения неизвестных, при которых значения функций равны... Большой энциклопедический словарь
  13. уравнение — уравнение I ср. 1. Процесс действия по гл. уравнивать I, уравниваться I 1. 2. Результат такого действия; уравнивание I 2. II ср. Математическое равенство, содержащее одну или несколько неизвестных величин и сохраняющее свою силу только при определённых значениях этих величин. Толковый словарь Ефремовой