Приближённое решение

Приближённое реше́ние

Дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения.

П. р. дифференциальных уравнений в виде аналитического выражения может быть найдено методом рядов (степенных, тригонометрических и др.), методом малого параметра, последовательных приближений методом (См. Последовательных приближении метод), Ритца и Галёркина методами (См. Ритца и Галёркина методы), Чаплыгина методом. Каждый из этих методов определяет один или несколько бесконечных процессов, с помощью которых при выполнении определённых условий можно получить точное решение задачи. Для получения П. р. останавливаются на некотором шаге процесса.

Если решение ищется в виде бесконечного ряда, то за П. р. принимают конечный отрезок ряда. Например, пусть требуется найти решение дифференциального уравнения y' = f (x, у), удовлетворяющее начальным условиям у (х0) = y0, причём известно, что f (x, у) аналитическая функция х, у в некоторой окрестности точки (х0, y0). Тогда решение можно искать в виде степенного ряда:

y (x) - y (x0) = Приближённое решение .

Коэффициенты Ak ряда могут быть найдены либо по формулам:

A1 = y’0 = f (x0, y0);

Приближённое решение. Рис. 2

Приближённое решение. Рис. 3

либо с помощью неопределенных коэффициентов метода (См. Неопределённых коэффициентов метод). Метод рядов позволяет находить решение лишь при малых значениях величины х — х0.

Часто (например, при изучении периодических движений в небесной механике и теории колебаний) встречается случай, когда уравнение состоит из членов двоякого вида: главных и второстепенных, причём второстепенные члены характеризуются наличием в них малых постоянных множителей. Обычно после отбрасывания второстепенных членов получается уравнение, допускающее точное решение. Тогда решение основного уравнения можно искать в виде ряда, первым членом которого является решение уравнения без второстепенных членов, а остальные члены ряда расположены по степеням малых постоянных величин, входящих во второстепенные члены (малых параметров). При этом уравнения для коэффициентов при степенях малых параметров линейны, что облегчает их решение. В роли малого параметра иногда выступают начальные значения (например, при изучении колебаний около положения равновесия). Метод малого параметра был использован при решении задачи о возмущённом движении в небесной механике Л. Эйлером и П. Лапласом. Теоретическое обоснование этого метода дали А. М. Ляпунов и А. Пуанкаре.

К численным методам относятся методы, позволяющие находить П. р. при некоторых значениях аргумента (т. е. получать таблицу приближённых значений искомого решения), пользуясь известными значениями решения в одной или нескольких точках. Такими методами являются, например, метод Эйлера, метод Рунге и целый ряд разностных методов.

Поясним эти методы на примере уравнения

y’’ = f (x, у)

с начальным условием у (х0) = y0. Пусть точное решение этого уравнения представлено в некоторой окрестности точки х0 в виде ряда по степеням h = хх0 Основной характеристикой точности формул П. р. дифференциальных уравнений является требование, чтобы первые k членов разложения в ряд по степеням h П. р. совпадали с первыми k членами разложения в ряд по степеням h точного решения.

Основная идея метода Эйлера заключается в применении метода рядов для вычисления приближённых значений решения у (х) в точках x1, x2,..., xn некоторого фиксированного отрезка [х0, b] Так, для того чтобы вычислить у (х1), где х1 = х0 + h, h = (b — x0)/n, представляют у (х1) в виде конечного числа членов ряда по степеням h = х1х0. Например, ограничиваясь первыми двумя членами ряда, получают для вычисления у (xk) формулы:

Приближённое решение. Рис. 4 , Приближённое решение. Рис. 5

Это т. н. метод ломаных Эйлера (на каждом отрезке [xk, xk+1] интегральная кривая заменяется прямолинейным отрезком — звеном ломаной Эйлера). Погрешность метода пропорциональна h2.

В методе Рунге вместо того, чтобы отыскивать производные, находят такую комбинацию значений f (x, у) в некоторых точках, которая даёт с определённой точностью несколько первых членов степенного ряда для точного решения уравнения. Например, правая часть формулы Рунге:

Приближённое решение. Рис. 6 ,

где

Приближённое решение. Рис. 7 ;

Приближённое решение. Рис. 8 ;

Приближённое решение. Рис. 9 ;

Приближённое решение. Рис. 10

дает первые пять членов степенного ряда с точностью до величин порядка h5.

В разностных формулах П. р. удаётся несколько раз использовать уже вычисленные значения правой части. Решение ищется в виде линейной комбинации у (xi), ηi и разностей Δiηj, где

ηj = hf (xj, yj); Δηj = ηj+1 — ηj;

Δiηj = Δi-1ηj+1 — Δi-1ηj.

Примером разностной формулы П. р. является экстраполяционная формула Адамса. Так, формула Адамса, учитывающая «разности» 3-го порядка:

Приближённое решение. Рис. 11

даёт решение у (х) в точке xk с точностью до величин порядка h4.

Для уравнений 2-го порядка можно получить формулы численного интегрирования путём двукратного применения

Формула k = 2 k = 3 k = 4
(1 + x)3 — 1 + 3x 0,04 0,012 0,004
Приближённое решение. Рис. 12 0,06 0,022 0,007
Приближённое решение. Рис. 13 0,19 0,062 0,020
Приближённое решение. Рис. 14 0,20 0,065 0,021
Приближённое решение. Рис. 15 0,31 (17°48') 0,144 (8°15') 0,067 (3°50')
Приближённое решение. Рис. 16 0,10 (5°43') 0,031 (l'48') 0,010 (0°34')
Приближённое решение. Рис. 17 0,25 (14°8') 0,112 (6°25') 0,053 (3°2')
Приближённое решение. Рис. 18 0,14 0,47 0,015
Приближённое решение. Рис. 19 0,04 0,014 0,004
Приближённое решение. Рис. 20 0,25 0,119 0,055

формулы Адамса. Норвежский математик К. Стёрмер получил формулу:

Приближённое решение. Рис. 21

особенно удобную для решения уравнений вида у'' = f (x, у). По этой формуле находят Δ2yn-1, а затем yn+1 = ynyn+1 + Δ2yn-1. Найдя yn+1, вычисляют y’’n+1 = f (xn+1, yn+1), находят разности и повторяют процесс далее.

Указанные выше численные методы распространяются и на системы дифференциальных уравнений.

Значение численных методов решения дифференциальных уравнений особенно возросло с распространением ЭВМ.

Кроме аналитических и численных методов, для П. р. дифференциальных уравнений применяются графические методы. В простейшем из них строят поле направлений, определяемое дифференциальным уравнением, т. е. в некоторых точках рисуют направления касательной к интегральной кривой, проходящей через эту точку. Затем проводят кривую так, чтобы касательные к ней имели направления поля (см. Графические вычисления).

Лит.: Березин И. С., Жидков Н. П., Методы вычислений, 2 изд., т. 2, М.. 1962; Бахвалов Н. С., Численные методы, М., 1973: Коллатц Л., Численные методы решения дифференциальных уравнений, пер. с нем., М., 1953; Милн В. Э., Численное решение дифференциальных уравнений, пер, с англ., М., 1955.

Источник: Большая советская энциклопедия на Gufo.me