ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

Лазер на основе полупроводникового кристалла. В отличие от лазеров др. типов, в П. л. используются излучательные квант. переходы между разрешёнными энергетич. зонами, а не дискр. уровнями энергии (см. ПОЛУПРОВОДНИКИ). В полупроводниковой активной среде может достигаться очень большой показатель оптич. усиления (до 104 см-1), благодаря чему размеры активного элемента П. л. исключительно малы (длина резонатора =50 мкм — 1 мм). Помимо компактности, особенностями П. л. явл. малая инерционность (=10-9 с), высокий кпд (до 50%), возможность спектральной перестройки и большой выбор в-в для генерации в широком спектральном диапазоне от l=0,3 мкм до 30 мкм (рис. 1). Активными ч-цами в П. л. служат избыточные (неравновесные) эл-ны проводимости и дырки, т. е. свободные носители заряда, к-рые могут инжектироваться, диффундировать и дрейфовать в активной среде. Важнейшим способом накачки в П. л. явл. инжекция через p — n-переход или гетеропереход (см. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД), позволяющая осуществить непосредств. преобразование электрич. энергии в когерентное излучение (инжекционный лазер). Др. способами накачки служат электрич. пробой (напр., в т. н. стримерных лазерах), бомбардировка эл-нами (П. л. с э л е к т р о н н о й н а к а ч к о й) и освещение (П. л. с о п т и ч. н а к а ч к о й). П. л. предложены Н. Г. Басовым и др., впервые осуществлены на р — n-переходе в кристалле GaAs P. Холлом, М. И. Нейтеном (США) и др., с электронной накачкой Басовым с сотр.ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

Рис. 1. Полупроводники, используемые в полупроводниковых лазерах, и спектральные диапазоны их излучения.

Оптич. усиление в полупроводниках возникает под действием интенсивной накачки при выполнении условий инверсии населённости уровней вблизи дна ?с в зоне проводимости и потолка ?v в валентной зоне (рис. 2). При этом вероятность заполнения эл-нами верхних рабочих уровней в разрешённой зоне (зоне проводимости) больше, чем нижних уровней (валентной зоны). В этом случае вынужденные излучат. переходы преобладают над поглощат. переходами.ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 2

Рис. 2. Схема накачки (а) и зонная диаграмма (б) полупроводника, используемого в полупроводниковом лазере; ? — энергия эл-на, р — квазиимпульс, ћw — энергия испускаемого кванта.

Величина оптич. усиления зависит не только от интенсивности накачки, но и от др. факторов: вероятности излучательной рекомбинации, внутр. квантового выхода излучения, темп-ры. В качестве лазерных материалов используются прямозонные полупроводники (напр., GaAs, CdS, PbS), в к-рых квант. выход излучения может достигать 100%. На непрямозонных полупроводниках (Ge, Si) пока не удаётся создать П. л. Разнообразие полупроводниковых лазерных материалов позволяет перекрыть широкий спектральный диапазон с помощью П. л. (табл. 1, 2).

Инжекционный П. л. представляет собой полупроводниковый диод, две плоскопараллельные грани к-рого, перпендикулярные плоскости p—n-перехода и гетероперехода, служат зеркалами оптического резонатора (коэфф. отражения =30%, рис. 3). Иногда применяются внеш. резонаторы.

Табл. 1. НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ ИНЖЕКЦИОННЫХ ЛАЗЕРОВПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 3

Табл. 2. ПОЛУПРОВОДНИКИ, ИСПОЛЬЗУЕМЫЕ В ГЕТЕРОЛАЗЕРАХПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 4

Инверсия заполнения достигается при большом прямом токе через диод за счёт инжекции избыточных носителей в слой, прилегающий к переходу. Генерация когерентного излучения возникает в полосе краевой люминесценции, если оптич. усиление способно превзойти потери энергии, связанные с выводом излучения наружу, поглощением и рассеянием внутри резонатора. Ток, соответствующий началу генерации, наз. пороговым. Плотность порогового тока в инжекционных П. л. обычно =1 к А/см2 (табл. 1).ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 5

ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 6

Рис. 3. Вверху инжекционный лазер на р —n-переходе; внизу — образцы инжекционных полупроводниковых лазеров.

Наибольшее распространение получили П. л. на основе гетероструктур (гетеролазеры), они имеют наиболее низкие пороговые плотности тока при темп-рах 300 К. Гетеролазер содержит 2 гетероперехода, один типа p — n, инжектирующий эл-ны (эмиттер), и другой, типа p — p, ограничивающий диффузное растекание носителей заряда из активного слоя; активная область заключена между ними. В т. н. п о л о с к о в ы х л а з е р а х активная область в форме узкой полоски шириной 1— 20 мкм протягивается вдоль оси резонатора от одного зеркала к другому. Благодаря малым размерам активной области пороговый ток полосковых гетеролазеров достаточно мал (5—150 мА) для получения непрерывной генерации при T=300 К. Мощность излучения таких П, л. (=100 мВт) ограничена перегревом активной области. В коротких импульсах П. л. испускают большую мощность (до 100 Вт), к-рая ограничена оптич. разрушением торцевых граней. Многоэлементные инжекционные П. л. создают в импульсе мощность до 10 кВт.

Полупроводники, из к-рых могут быть изготовлены гетеролазеры, при разл. хим. составе должны обладать одинаковым периодом крист. решётки. Используются многокомпонентные тв. растворы, среди к-рых можно найти непрерывные ряды в-в с постоянным периодом решётки (изопериодические системы). Напр., в гетеролазере на основе твёрдых растворов AlxGat-xAs гетероструктуру составляют слои (рис. 4): p(AlxGa1-xAs); p(GaAs); n(AlxGa1-xAs).ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 7

Рис. 4. Схема гетеролазера с двухсторонней гетероструктурой на основе AlGaAs (a) и его энергетич. диаграмма (б); ?с и ?v — края зоны проводимости и валентной зоны; ?эF и ?дF — энергии Ферми для эл-нов и дырок.

В П. л. с электронной накачкой используются пучки быстрых эл-нов с энергией 104—105 эВ (как правило, меньшей порога образования радиационных дефектов в кристалле). Избыточные носители заряда образуются в результате ионизации при замедлении быстрых эл-нов. Глубина проникновения эл-нов зависит от энергии и может достигать 10-2 см. П. л. этого типа, помимо активного элемента, содержат источник высокого напряжения, электронную пушку и систему фокусировки и управления пучком. Достоинство П. л. с электронной накачкой — возможность сканирования излучающего пятна по активному элементу, что позволяет осуществить воспроизведение и проектирование на большой экран телевизионного изображения (разновидность лазерного телевидения). Мощность излучения в импульсе в П. л. этого типа может достигать 1 МВт (при накачке большого объёма кристалла или многоэлементной мишени). П. л. с электронной накачкой изготовляются в виде отпаянной вакуумной трубки с оптич. окном для вывода лазерного излучения (рис. 5). ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР. Рис. 8

Рис. 5. Полупроводниковые лазеры с электронной накачкой в отпаянной трубке.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Полупроводниковый лазер — Полупроводниковый квантовый генератор, Лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л., в отличие от лазеров др. Большая советская энциклопедия
  2. ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР — ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР — лазер, активная среда которого — полупроводниковый кристалл. Полупроводниковый лазер имеет малые размеры (50 мкм — 1 мм) — высокий кпд (до 50%) — возможность спектральной перестройки. Большой энциклопедический словарь