ПОЛУПРОВОДНИКИ

Широкий класс в-в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106—104 Ом-1 см-1 и хороших диэлектриков s=10-10—10-12 Ом-1см-1 (электропроводность указана при комнатной темп-ре). Характерной особенностью П., отличающей их от металлов, явл. возрастание электропроводности с ростом темп-ры, причём, как правило, в широком интервале темп-р возрастание это происходит экспоненционально:

s=s0ехр(-?A/kT). (1)

Здесь ?A — т. н. энергия активации проводимости, s0 — коэфф. (в действительности зависящий от темп-ры, но медленнее, чем экспоненциальный множитель). Ф-ла (1) означает, что эл-ны в П. связаны с атомами, с энергией связи порядка ?A. С повышением темп-ры тепловое движение начинает разрывать связи эл-нов, и часть их, пропорц. ехр(-?А/kT), становится свободными носителями заряда.

Связь эл-нов может быть разорвана не только тепловым движением, но и разл. внеш. воздействиями: светом, потоком быстрых ч-ц, сильным электрич. полем и т. д. Поэтому для П. характерна высокая чувствительность электропроводности к внеш. воздействиям, а также к содержанию примесей и дефектов в кристаллах, поскольку во многих случаях энергия ?A для эл-нов, локализованных вблизи примесей или дефектов, существенно меньше, чем в идеальном кристалле данного П. Возможность в широких пределах управлять электропроводностью П. изменением темп-ры, введением примесей и т. д. явл. основой их многочисл. и разнообразных применений.

Полупроводники и диэлектрики. Классификация полупроводников.

Формула (1) относится в равной мере и к диэлектрикам, электропроводность к-рых может также стать заметной при высокой темп-ре. Различие между П. и диэлектриками явл. скорее количественным, чем качественным. Точнее было бы говорить о полупроводниковом состоянии неметаллич. в-в, не выделяя П. в особый класс, а к диэлектрикам относить лишь такие в-ва, у к-рых в силу больших значений ?A и малых s0 электропроводность могла бы достигнуть заметных значений лишь при темп-pax, превышающих темп-ру их испарения.

Однако термин «П.» обычно понимают в более узком смысле, как совокупность неск. наиболее типичных групп в-в, полупроводниковые свойства к-рых чётко выражены уже при комнатной темп-ре (300 К).

Примеры таких групп:

1) элементы IV группы периодич. системы элементов Ge и Si, которые наиболее полно изучены и с к-рыми связаны многие успехи полупроводниковой электроники. Атомы этих элементов, обладая 4 валентными эл-нами, образуют крист. решётки типа алмаза с ковалентной связью атомов. Сам алмаз также обладает свойствами П.; однако величина ?A для него значительно больше, чем у Ge и Si, и поэтому при T=300 К его собственная (не связанная с примесями или внеш. воздействиями) проводимость мала.

2) А л м а з о п о д о б н ы е п о л у п р о в о д н и к и. К ним относятся соединения элементов III группы периодич. системы (Al, Ga, In) с элементами V группы (Р, As, Sb), наз. П. типа AIIIBV (GaAs, InSb, GaP, InP и т. п.). Атомы III группы имеют 3 валентных эл-на, а V группы — 5, так что ср. число валентных эл-нов на 1 атом в этих соединениях также 4. Каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего образуется крист. решётка, подобная решётке алмаза с той лишь разницей, что ближайшими соседями атома АIII явл. атомы BV, а атома BV— А . За счёт частичного перераспределения эл-нов атомы АIII — BV в такой структуре оказываются разноимённо заряженными. Поэтому связи в кристаллах А111—BV не полностью ковалентные, а частично ионные (см. ИОННАЯ СВЯЗЬ). Однако ковалентная связь в них преобладает и определяет структуру, в результате чего эти кристаллы по многим свойствам являются ближайшими аналогами Ge и Si. Соединения элементов II и VI групп периодической системы — A11—BVI (ZnTe, ZnSe, CdTe, CdS и т. п.) также имеют (в среднем) 4 валентных эл-на на атом, но ионная связь у них более сильно выражена. Свойства П. у них не столь ярко выражены, как в предыдущих группах. Представление о «средней четырёхвалентности» и алмазоподобных П. оказалось плодотворным для поиска новых П., напр. типа A11—BVICV2 (ZnSnP2, CdGeAs3 и т. п.). Многие из алмазоподобных П. образуют сплавы, к-рые также явл. П., напр. Ge — Si, GaAs — GaP и др.

3) Элементы VI и V групп и их аналоги. Элементы VI группы Те и Se как П. были известны раньше, чем Ge и Si, причём Se широко использовался в выпрямителях электрич. тока и фотоэлементах. Элементы V группы As, Sb и Bi — полуметаллы, по свойствам близкие к П., а их ближайшие аналоги — соединения типа AIVBVI (PbS, PbSe, SeTe, GeTe и т. п.), имеющие в среднем по 5 валентных эл-нов на атом, образуют одну из важных групп П., известных как приёмники ИК-излучения. Среди соединений элементов VI группы (О, S, Se,Te) с элементами I—V групп очень много П. Большинство из них мало изучено. Примером более изученных и практически используемых могут служить Cu2O (купроксные выпрямители) и Bi2Te3 (термоэлементы).

4) Соединения элементов VI группы с переходными металлами (Ti, V, Mn, Fe, Ni, Sm, Eu и т. п.). В этих П. преобладает ионная связь. Большинство из них обладает той или иной формой магн. упорядочения (см. МАГНИТНЫЕ ПОЛУПРОВОДНИКИ). В нек-рых из них (V2O3, Fe3O4, NiS, Eu2O и др.) при изменении темп-ры и давления наблюдается фазовый переход полупроводник — металл.

Многие органич. соединения также обладают свойствами П. (см. ОРГАНИЧЕСКИЕ ПОЛУПРОВОДНИКИ).

Электроны и дырки в полупроводниках.

Т. к, в тв. теле атомы или ионы сближены на расстояние порядка ат. радиуса, то в нём происходит непрерывный переход валентных эл-нов от одного атома к другому. Такой электронный обмен может привести к образованию ковалентной связи, если электронные оболочки атомов сильно перекрываются и переходы эл-нов между атомами происходят быстро. Эта картина полностью применима к Ge и Si. Все атомы Ge нейтральны и связаны друг с другом ковалентной связью. Однако электронный обмен между атомами не приводит непосредственно к электропроводности, т. к. в целом распределение электронной плотности жёстко фиксировано: по 2 эл-на на связь между каждой парой атомов — ближайших соседей. Чтобы создать проводимость, необходимо разорвать хотя бы одну из связей, удалив с неё эл-н, перенести его в к.-л. др. ячейку кристалла, где все связи заполнены, и этот эл-н будет лишним. Такой эл-н в дальнейшем свободно может переходить из ячейки в ячейку (все они для него эквивалентны) и, являясь всюду лишним, переносит с собой избыточный отрицат. заряд, т. е. становится э л е к т р о н о м п р о в о д и м о с т и. Разорванная же связь становится блуждающей по кристаллу д ы р к о й, поскольку в условиях сильного обмена эл-н соседней связи быстро занимает место ушедшего. Недостаток эл-на у одной из связей означает наличие у атома (или пары атомов) единичного положит. заряда, к-рый переносится вместе с дыркой. Эл-ны и дырки — свободные носители заряда в П. В случае разрыва ионной связи перекрытие электронных оболочек меньше и электронные переходы менее часты. В этом случае также образуются эл-н проводимости и дырка, однако разрыв ионной связи требует большей затраты энергии.

В идеальных кристаллах возбуждение одного из связанных эл-нов и превращение его в эл-н проводимости неизбежно вызывает появление дырки, так что концентрации обоих типов носителей равны между собой. Это не означает, что вклад их в электропроводность одинаков, т. к. подвижность носителей тока (эл-нов и дырок) может быть различной. В реальных кристаллах равенство концентраций эл-нов и дырок может нарушаться за счёт примесей и дефектов кристаллич. решётки. Электропроводность П. м. б. обусловлена как собственными электронами атомов данного вещества (с о б с т в е н н а я п р о в о д и м о с т ь), так и электронами примесных атомов (п р и м е с н а я п р о в о д и м о с т ь). Источниками носителей тока могут быть также разл. дефекты крист. структуры, напр. вакансии, междоузельные атомы, а также отклонения от стехиометрич. состава.

Примеси и дефекты

Делятся на д о н о р ы и а к ц е п т о р ы. Доноры отдают в объём П. избыточные эл-ны и создают т. о. электронную проводимость (га-типа). Акцепторы захватывают валентные эл-ны в-ва, в к-рое они внедрены (матрицы), в результате чего создаются дырки и возникает дырочная проводимость (р-типа). Типичные примеры доноров — примесные атомы элементов V группы (Р, As, Sb) в Ge и Si. Внедряясь в крист. решётку, такой атом замещает в одной из ячеек атом Ge. При этом 4 из 5 его валентных эл-нов образуют с соседними атомами Ge ковалентные связи, а 5-й эл-н оказывается для данной решётки «лишним». Не локализуясь ни на одной связи, он становится электроном проводимости. При этом примесный атом однократно положительно заряжен и притягивает эл-н, что может привести к образованию связанного (слабо) состояния эл-на с примесным ионом. Размеры области вблизи примеси, в к-рой локализован электрон, в десятки раз превышают размер элементарной ячейки кристалла, а энергия ионизации примеси мала (=0,01 эВ в Ge и 0,04 эВ в Si), поэтому уже при темп-ре 77 К большинство примесей ионизовано, т. е. в П. появляются эл-ны проводимости с концентрацией, определяемой концентрацией донорных примесей.

Аналогично атомы III группы (В, А1, Ga, In) — типичные акцепторы в Ge и Si. Захватывая один из валентных эл-нов Ge в дополнение к своим 3 валентным эл-нам, они образуют 4 ковалентные связи с ближайшими атомами Ge и превращаются в отрицательно заряженный ион. В месте захваченного эл-на остаётся дырка, к-рая может быть удержана в окрестности акцепторного иона кулоновским притяжением к нему, однако на большом расстоянии и с очень малой энергией связи. Поэтому при не очень низких темп-pax эти дырки явл. свободными носителями заряда.

Рассмотренные примеры относятся к примесям замещения в П. Примером примеси внедрения в Si и Ge явл. Li. Из-за малости иона Li+ он, не нарушая существенно структуры решётки, располагается между атомами Ge (в междоузлии). Свой внеш. валентный эл-н, движущийся на существенно большем расстоянии, он притягивает очень слабо и легко отдаёт, являясь т. о. типичным донором. Во многих П. типа AIVBVI источниками дырок являются вакансии атомов АIV, а вакансии BVI — источниками эл-нов проводимости. Т. о., введение определённых примесей (л е г и р о в а н и е П.) — эфф. метод получения П. с разл. требуемыми свойствами.

Сильно легированные полупроводники.

При больших концентрациях примесей (или дефектов) их вз-ствие ведёт к изменениям свойств П. Это можно наблюдать в сильно легированных П., содержащих примеси в столь больших концентрациях Nпр, что ср. расстояние между ними, примерно равное N1/3, становится меньше (или равным) ср. расстояния а, на к-ром находится от примеси захваченный ею эл-н (или дырка). В таких условиях носитель не может локализоваться на к.-л. центре, т. к. он всё время находится на сравнимом расстоянии от неск. одинаковых примесей. Более того, воздействие примесей на движение эл-нов вообще мало, т. к. большое число носителей со знаком заряда, противоположным заряду примесных ионов, экранируют электрич. поле этих ионов. В результате все носители, вводимые с этими примесями, оказываются свободными даже при самых низких темп-pax, и П. превращается в полуметалл с одним типом носителей.

Условие сильного легирования: N1/3пр•a=1 легко достигается для примесей, создающих уровни с малой энергией связи (м е л к и е у р о в н и). Напр., в Ge и Si, легированных примесями элементов III или V групп, это условие уже выполняется при Nпр=1018 — 1019 см-3. Эти примеси удаётся вводить в концентрациях вплоть до Nпр=1021 см-3 при плотности атомов осн. в-ва 5•1022 см-3. В П. типа AIVBVI практически всегда с большой концентрацией (=1017— 1018 см-3) присутствуют вакансии одного из компонентов, а энергия связи носителей с этими вакансиями мала.

Зонная структура.

Описание законов движения носителей заряда в П. даёт зонная теория тв. тела. В П. верхняя из заполненных разрешённых зон наз. валентной, а наиболее низкая из незаполненных — з о н о й п р о в о д и м о с т и. Энергетич. щель ?g между валентной зоной и зоной проводимости наз. з а п р е щ ё н н о й з о н о й. Тепловое движение «забрасывает» часть эл-нов из валентной зоны в зону проводимости; в валентной зоне при этом появляются д ы р к и (рис. 1).

Эл-ны и дырки обычно сосредоточены вблизи ?с — ниж. края (дна) зоны проводимости или ?v — верх. края (потолка) валентной зоны на энергетич. расстояниях от них =kT, что гораздо меньше ширины разрешённых зон. В узких областях =kT сложные зависимости энергии носителей от их квазиимпульса р : ?(р) (дисперсии закон) принимают более простой вид. Напр., для эл-нов вблизи ?с закон дисперсии имеет вид:ПОЛУПРОВОДНИКИ

Здесь индекс i нумерует оси координат, рэ0 — квазиимпульс, соответствующий ?с. Коэфф. mi — эффективная масса эл-нов проводимости. ПОЛУПРОВОДНИКИ. Рис. 2

Рис. 1. Валентная зона (белые кружки — дырки) и зона проводимости (чёрные кружки — эл-ны проводимости); ?g — ширина запрещённой зоны; ?c — дно зоны проводимости; ?v — потолок валентной зоны.

Аналогично, для дырок вблизи ?v закон дисперсии имеет вид:ПОЛУПРОВОДНИКИ. Рис. 3

Эффективные массы эл-нов mэ и дырок mд не совпадают с массой свободного эл-на m0 и, как правило, анизотропны (т. е. различны для разных i). Их значения для разных П. варьируются от сотых долей m0 до сотен m0. Ширина запрещённой зоны П. также меняется в широких пределах. Так, при T®0К ?g=0,165 эВ в PbSe и 5,6 эВ в алмазе, а серое олово — пример бесщелевого полупроводника, у к-poro ?g=0 (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ).ПОЛУПРОВОДНИКИ. Рис. 4

Рис. 2. Зонная структура Ge; L, D и Г— 3 минимума зависимости ?(р) для эл-нов проводимости вдоль осей (100) (D), (111) (L) при р=0(Г) по оси ординат—энергия, по оси абсцисс—проекции квазиимпульса на оси (100) и (111).

Наиболее полно изучена зонная структура Ge, Si и соединений типа AIIIBV. У Ge две валентные зоны соприкасаются вблизи потолка (рис. 2), что означает существование двух типов дырок: «тяжёлых» с mд =0,3 m0 и «лёгких» с mд =0,04 m0. На 0,3 эВ ниже расположена третья валентная зона, в к-рую, как правило, дырки уже не попадают. Для зоны проводимости Ge характерно наличие трёх типов минимумов ?(р): D, Г и L. Наинизший из них L-минимум расположен в импульсном пространстве (р-пространстве) на границе Вриллюэна зоны в направлении (111). Расстояние его от ?v и есть ширина запрещённой зоны ?g=0,74. эВ (при Т ®0; с ростом Т ?g уменьшается). Эффективные массы вблизи L-минимума сильно анизотропны: mэ=1,6m0 вдоль направления (III) и 0,08 m0 для перпендикулярных направлений. Четырём эквивалентным направлениям (III) в кристалле Ge (диагонали куба) соответствуют 4 эквивалентных L-минимума. Минимумы Г и D, расположенные при р=0 и в направлении оси (100), по энергии выше L-минимума на 0,15 эВ и 0,2 эВ и поэтому количество эл-нов проводимости в них, как правило, гораздо меньше, чем в L-минимуме.

Зонные структуры др. алмазоподобных П. близки к структуре Ge. Так, в Si, GaP и алмазе наинизшим явл. D-минимум, а в InSb, InAs и GaAs — Г-минимум, для к-рого характерны изотропные и весьма малые эффективные массы (0,013 m0 в InSb и 0,07m0 в GaAs). Структуры валентных зон во всех алмазоподобных П. подобны, но отличаются от П. др. групп.

Некристаллические полупроводники.

Нек-рые П. (Ge, Si, AIIIBV)при плавлении становятся металлами (см. ЖИДКИЕ МЕТАЛЛЫ). Однако др. П. (Те, Si, AIVBVI и др.) остаются П. (см. ЖИДКИЕ ПОЛУПРОВОДНИКИ). Существуют также тв. аморфные П. Отсутствие строгой упорядоченности в расположении атомов создаёт локальные флуктуации плотности и межатомных расстояний, в результате чего энергии эл-на вблизи разных атомов одного и того же сорта не вполне одинаковы. Это затрудняет переход эл-на от атома к атому, т. к. такие переходы связаны теперь с изменением энергии. У эл-нов и дырок с энергиями вблизи краёв зон не хватает энергии для преодоления энергетич. барьера между соседними атомами и поэтому они могут стать локализованными. В результате возникают электронные уровни в диапазоне энергий, к-рый в кристалле соответствовал бы запрещённой зоне. Находящиеся на этих уровнях эл-ны локализованы вблизи соответствующих флуктуации, и к ним неприменимы такие понятия зонной теории, как квазиимпульс и др. Меняется и само понятие запрещённой зоны — теперь уже эта область энергии заполнена локализованными состояниями (п с е в д о з а п р е щ ё н н а я з о н а; (см. АМОРФНЫЕ ПОЛУПРОВОДНИКИ, НЕУПОРЯДОЧЕННЫЕ СИСТЕМЫ)).

Оптические свойства.

Зонная структура П. отражается в их оптич. свойствах. Самым характерным для П. процессом поглощения света явл. собственное поглощение, при к-ром эл-н валентной зоны с квазиимпульсом р, поглощая фотон, переходит в незаполненное состояние зоны проводимости с квазиимпульсом р'. При этом энергия фотона ћw (w — частота света) связана с энергиями эл-на в начальном ?н и конечном ?к состояниях соотношением: ћw=?к-?н и выполняется закон сохранения квазиимпульса: p'=p+ћq (q — волновой вектор фотона). Импульс фотона ћq для видимого света и более длинноволнового излучения пренебрежимо мал по сравнению с р' , поэтому р'»р.

Собств. поглощение света возможно при ћw??g. Миним. энергия квантов, поглощаемых П. (порог, или край собств. поглощения), может быть больше ?g, если дно зоны проводимости ?с и потолок валентной зоны ?v соответствуют различным р. Переход между ними не удовлетворяет требованию р'=р, в результате чего поглощение должно начинаться с более коротких длин волн. В случае Ge это переходы в Г-минимум. Однако переходы, для к-рых p'?p, также оказываются возможными, если эл-н, поглощая фотон, одновременно поглощает или испускает фонон. Оптич. переходы, в к-рых эл-н существенно изменяет свой квазиимпульс, наз. н е п р я м ы м и, в отличие от п р я м ы х переходов, удовлетворяющих условию р'»p. Необходимость испускания или поглощения фонона делает непрямые переходы значительно менее вероятными, чем прямые. Поэтому коэфф. поглощения света, обусловленный непрямыми переходами, порядка 103 см-1, тогда как в области прямых переходов он достигает 105 см-1.

Наличие в спектре поглощения П. широких и интенсивных полос в области относит. малых частот (ћw=?g=l—5 эВ) показывает, что большое число валентных эл-нов слабо связано. Слабая связь легко деформируется внеш. электрич. полем, что обусловливает высокую поляризуемость кристалла. И действительно, для многих П. (Ge, Si, AIIIBV, AIVBVI и др.) характерны большие значения диэлектрической проницаемости e (в Ge e=16, в GaAs e=11, в РbТе e=30).

Вследствие кулоновского взаимодействия эл-нов и дырок в П. возможно образование связанных состояний— экситонов, к-рые проявляются в спектрах поглощения в виде узких линий, сдвинутых от края поглощения в сторону более длинных волн.

Наряду с собств. поглощением возможно поглощение света свободными носителями, связанное с их переходами в пределах зоны. Такие внутризонные переходы происходят при участии фононов или при рассеянии эл-нов примесными атомами.

Коэфф. поглощения света в П. определяется произведением вероятности поглощения фотона каждым эл-ном на число эл-нов, способных поглощать кванты данной энергии. Поэтому частотная зависимость коэфф. поглощения даёт сведения о плотности электронных состояний в зонах g(?). Так, вблизи края собств. поглощения в случае прямых переходов коэфф. поглощения практически повторяет плотность состояний:ПОЛУПРОВОДНИКИ. Рис. 5

Прозрачностью П, можно управлять в небольших пределах с помощью внешних электрич. и магн. полей. В П. с заметной долей ионной связи в далёкой ИК области спектра (ћw=10-2 эВ) наблюдаются полосы поглощения, связанные с возбуждением фотонами оптич. фононов.

Равновесные и неравновесные носители. При отсутствии внеш. воздействий равновесные концентрации эл-нов и дырок в П. полностью определяются темп-рой, шириной запрещённой зоны, эфф. массами носителей, концентрациями и пространств. распределением примесей и дефектов, а также энергиями связи с ними эл-нов и дырок.

Вблизи Т=0 К все собств. эл-ны П. находятся в валентной зоне, целиком заполняя её, а примесные — локализованы вблизи примесей или дефектов, так что свободные носители заряда отсутствуют. Если в образце есть и доноры и акцепторы, то эл-ны с доноров могут перейти к акцепторам. Если концентрация доноров Nд больше концентрации акцепторов NA, то в образце окажется NA отрицательно заряженных акцепторов и столько же положительно заряженных доноров. Только Nд-NA доноров останутся нейтральными и способными с повышением темп-ры отдать свои эл-ны в зону проводимости. Такой образец явл. П. n-типа с концентрацией носителей .Nд-NA. Аналогично в случае NA>Nд П. имеет проводимость р-типа. Связывание донорных эл-нов акцепторами наз. к о м п е н с а ц и е й п р и м е с е й, а П., содержащие доноры и акцепторы в сравнимых концентрациях, наз. к о м п е н с и р о в а н н ы м и.

С повышением темп-ры тепловое движение «выбрасывает» в зону проводимости эл-ны с донорных атомов и из валентной зоны (в случае проводимости n-типа). Энергия ионизации донора меньше ширины запрещённой зоны ?g<-?д, поэтому при не слишком высоких темп-рах первый из этих процессов оказывается доминирующим. Концентрация эл-нов в зоне проводимости при этом во много раз больше концентрации дырок в валентной зоне. В таких условиях эл-ны наз. о с н о в н ы м и н о с и т е л я м и, а дырки — неосновными (в П. р-типа — наоборот). Рост концентрации примесных эл-нов с темп-рой продолжается до полной ионизации всех доноров, после чего их концентрация в широком интервале темп-р остаётся почти постоянной. Число эл-нов, забрасываемых из валентной зоны, продолжает экспоненциально нарастать и при нек-рой темп-ре становится сравнимым с числом примесных эл-нов, а потом и во много раз большим. Эта область собств. проводимости П., когда концентрации эл-нов n и дырок p практически равны: n=p=ni.

При освещении П., облучении быстрыми частицами, наложении сильного электрич. поля и т. д. в П. появляются дополнит. неравновесные носители, что приводит к повышению электропроводности (см. ФОТОПРОВОДИМОСТЬ). Наряду с генерацией неравновесных носителей существует обратный процесс — рекомбинация эл-нов и дырок — переход эл-на из зоны проводимости в валентную зону, в результате чего происходит исчезновение эл-на и дырки. Рекомбинация может сопровождаться излучением, что лежит в основе полупроводниковых источников света (полупроводниковый лазер, светоизлучающие диоды).

Возможен также переход эл-на из зоны проводимости или дырки из валентной зоны в состояния, локализованные вблизи примесей или дефектов («захват» носителей). При термодинамич. равновесии тепловая генерация носителей и ионизация доноров и акцепторов уравновешивают процессы рекомбинации и захвата. При появлении в П. неравновесных носителей число актов рекомбинации и захвата возрастает. Т. о., после прекращения внеш. воздействия рекомбинация происходит интенсивнее, чем генерация, и концентрация носителей приближается к равновесному значению. Ср. время жизни т неравновесных носителей в П. варьируется от 10-3 с до 10-10 с.

Кинетические свойства.

При наложении внеш. электрич. поля в П. возникает направленное движение (дрейф) носителей, обусловливающее протекание тока. Скорость дрейфа vдр пропорц. напряжённости Е электрич. поля: vдр=mЕ. Коэфф. m наз. подвижностью носителей тока. В разных П. m варьируется в широких пределах (от 105 до 10-3 см2/В•с и меньше при T=300 К). При m?1 см2/В•с электропроводность П. осуществляется посредством движения носителей в разрешённых зонах, изредка прерываемого столкновениями с решёткой; при этом длина свободного пробега носителей в сотни или тысячи раз превышает межатомные расстояния в кристалле. При меньших значениях m имеет место прыжковая проводимость.

Носители, дрейфующие в электрич. поле в присутствии перпендикулярного к нему внеш. магн. поля, отклоняются в поперечном направлении под действием Лоренца силы. Это приводит к возникновению Холла эффекта и др. галъваномагнитных явлений. В П. эти явления обладают рядом особенностей, обусловленных наличием неск. типов носителей заряда, зависимостью времени их свободного пробега от энергии и сложным энергетич. спектром. Изучение гальваномагн. явлений в П. даёт информацию о концентрациях носителей, структуре энергетич. зон и характере процессов рассеяния носителей. Это относится и к термомагн. явлениям, когда дрейф эл-нов обусловлен градиентом темп-ры.

При неоднородном распределении концентрации носителей в П. возникает в результате их диффузии поток носителей с плотностью jд=-Dgradn. Коэфф. диффузии D связан с подвижностью (г носителей соотношением Эйнштейна:

D=kTm/e. (7)

Путь, к-рый диффундирующие неравновесные носители успевают пройти за время жизни т, наз. диффузионной длиной; он равен: lD=?Dt.

Контактные явления.

Контакты П. с металлом или с др. П. обладают иногда выпрямляющими свойствами, т. е. значительно эффективнее пропускают ток в одном направлении, чем в обратном. Это связано с изменением концентрации или типа носителей тока в приконтактной области и с возникновением контактной разности потенциалов. Напряжение, приложенное к контакту, в зависимости от его знака увеличивает либо уменьшает число носителей в приконтактной области, так что сопротивление контакта в прямом и обратном направлениях оказывается существенно различным (см. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД, ГЕТЕРОПЕРЕХОД, ШОТКИ БАРЬЕР).

Горячие электроны, неустойчивости в полупроводниках.

В сильных электрич. полях (=100—1000 В/см) возможно изменение распределения носителей по энергиям. Это приводит к увеличению ср. энергии (к разогреву) носителей; изменяются и др. параметры — время свободного пробега, подвижность, коэфф. диффузии и т. п. (см. ГОРЯЧИЕ ЭЛЕКТРОНЫ). Разогрев носителей приводит к отклонениям от закона Ома, причём характер этих отклонений весьма различен для разных П. и даже для одного и того же П., в зависимости от темп-ры, примесей, наличия магн. поля и т. п.

Если в нек-рой области полей Е с ростом Е ток убывает, то равномерное распределение поля в образце оказывается неустойчивым и спонтанно возникают движущиеся в направлении тока области (домены), в к-рых поле значительно больше, а концентрация носителей меньше, чем в остальной части П. Прохождение доменов сопровождается периодич. колебаниями тока, так что П. оказывается генератором электрич. колебаний с частотой до 1011 Гц (см. ГАННА ЭФФЕКТ).

В П., обладающих пьезоэлектрич. свойствами (см. ПЬЕЗОПОЛУПРОВОДНИКИ), нелинейные эффекты возникают также из-за отклонения от равновесного распределения фононов. В этих в-вах поток носителей становится интенсивным излучателем упругих волн, когда дрейфовая скорость носителей превышает скорость звука (см. АКУСТОЗЛЕКТРОННОВ ВЗАИМОДЕЙСТВИЕ).

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ВАЖНЕЙШИХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВПОЛУПРОВОДНИКИ. Рис. 6

Отклонения от закона Ома могут быть вызваны также изменением концентрации носителей под действием электрич. поля, напр. из-за уменьшения вероятности рекомбинации или захвата на примеси с ростом энергии. Самым распространённым механизмом изменения концентрации носителей в сильном поле явл. ударная ионизация, при к-рой носители, набравшие в поле энергию, большую ?g, сталкиваясь с эл-нами валентной зоны, «выбрасывают» их в зону проводимости, создавая тем самым новые электронно-дырочные пары.

В достаточно сильном поле рождённые в результате ударной ионизации неравновесные носители могут за время своей жизни создать новые пары, и тогда процесс нарастания концентрации носителей принимает лавинообразный характер, т. е. происходит пробой П. В отличие от пробоя диэлектриков, пробой П. не сопровождается разрушением кристалла, т. к. пробивные поля для П. относительно невелики (?105 В/см, в InSb»250 В/см). Специфичный для П. пробой, связанный с ударной ионизацией примесей, имеющих малую энергию ионизации, при низких темп-рах происходит в полях =1—10 В/см.

Электрич. поле может и непосредственно перебрасывать валентный эл-н в зону проводимости, т. е. генерировать электронно-дырочные пары. Этот эффект связан с «просачиванием» эл-на под действием внеш. поля через запрещённую зону (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Он наблюдается обычно лишь в весьма сильных полях, тем больших, чем больше ?g. Такие поля, однако, реализуются во многих приборах; в ряде случаев туннельный эффект определяет характеристики этих приборов (туннельный диод).

Исторические сведения.

Хотя П., как особый класс в-в, были известны ещё с кон. 19 в., только развитие квант. теории твёрдого тела позволило понять их особенности (Уилсон, США, 1931). Задолго до этого были обнаружены эффект выпрямления тока на контакте металл — П., фотопроводимость и построены первые приборы на их основе. О. В. Лосев (1923) доказал возможность использования контактов П.— металл для усиления и генерации колебаний (крист. детектор). Однако в последующие годы крист. детекторы были вытеснены электронными лампами и лишь в нач. 50-х гг. с открытием транзисторов (Дж. Бардин. У.Браттейн, У. Б. Шокли, США, 1949) началось широкое использование П. (гл. обр. Ge и Si) в радиоэлектронике (см. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ). Одновременно началось интенсивное изучение свойств П., чему способствовало совершенствование методов очистки кристаллов и их легирования.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Полупроводники — Широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ ~ 106—104 ом-1 см-1) и хороших диэлектриков (См. Большая советская энциклопедия
  2. полупроводники — ПОЛУПРОВОДНИКИ, ов, ед. ник, а, м. (спец.). Вещества, электропроводность к-рых при комнатной температуре меньше, чем у металлов, и больше, чем у диэлектриков. | прил. полупроводниковый, ая, ое. П. радиоприёмник (на полупроводниках). Толковый словарь Ожегова
  3. полупроводники — ПОЛУПРОВОДНИКИ вещества, характеризующиеся увеличением электрич. проводимости с ростом температуры. Хотя часто П. определяют как вещества с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (σ !... Химическая энциклопедия
  4. ПОЛУПРОВОДНИКИ — ПОЛУПРОВОДНИКИ — вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 — 104 Ом-1 см-1) и диэлектриков (10-8 — 10-12 Ом-1 см-1). Большой энциклопедический словарь
  5. полупроводники — ПОЛУПРОВОДНИКИ -ов; мн. (ед. полупроводник, -а; м.). Физ. Вещества, которые по электропроводности занимают промежуточное место между проводниками и изоляторами. Свойства полупроводников. Производство полупроводников. Толковый словарь Кузнецова