Идеал

Специального рода подобъект в иек-рой алгебраич. структуре. Понятие И. возникло первоначально в теории колец. Название И. ведет свое происхождение от идеальных чисел. Для алгебры, кольца или полугруппы Аидеал I есть подалгебра, подкольцо или полугруппа, замкнутая относительно умножения на элементы из А. При этом И. I наз. левым (соответственно правым), если он замкнут относительно умножения слева (соответственно справа) на элементы из А, т. е. АI =I (соответственно IА = I), где И., являющийся одновременно левым и правым (т. е. выдерживающий любые умножения на элементы из А), наз. двусторонним. В коммутативном случае все эти три понятия совпадают. Любому утверждению о левых И. отвечает двойственное утверждение о правых И. (далее формулировки будут приводиться только в "левом случае"). Двусторонние И. в кольцах и алгебрах играют ту же роль, что и нормальные делители в группах. Для всякого гомоморфизма f: ядром Кеr f (т. е. множеством элементов, отображающихся f в 0) служит И., и обратно, всякий И.- ядро нек-рого гомоморфизма. Более того, И. I однозначно определяет конгруэнцию x в А, нулевым классом к-рой он является, и, следовательно, однозначно (с точностью до изоморфизма) определяет образ Af гомоморфизма f, ядром к-рого он служит: Af изоморфно факторкольцу (факторалгебре) А/x, обозначаемому также А/I. Аналогичными свойствами относительно гомоморфизмов обладают И. мультиоператорных групп. В мультиоператорной Q-группе АИ. определяется как нормальный делитель ее аддитивной группы, удовлетворяющий условию: для всякой n-арной операции со, любых элементов и при всяком i=1, 2, . . ., и должно иметь место включение-(а 1, а 2. . . а nw)+а 1 . . . а i-1(b+а i) а i+1 ... а nwI (для колец и алгебр это понятие индуцирует понятие двустороннего И.). Двусторонние И. полугрупп, напротив, не дают описания всех гомоморфных образов данной полугруппы. Если задан гомоморфизм f полугруппы Ана полугруппу В, то только в случае, когда В- полугруппа с нулем, с гомоморфизмом f естественно связан двусторонний И. f-1(0), к-рый, однако, не обязан определять однозначно f. Тем не менее, если I — И. в A, то среди факторполугрупп полугруппы А, имеющих в качестве элемента класс I, существует максимальная фактор-полугруппа А/I (наз. идеальным факторо м). Элементами этой полугруппы будут элементы множества и сам И. I, к-рый будет нулем в А/I. Для любого подмножества можно определить идеал IX, порожденный X, как пересечение всех И., содержащих множество X. Множество Xназ. базисом идеала IX. Разные базисы могут порождать один и тот же И. , порожденный одним элементом, наз. главным. Пересечение, а в случае полугрупп и объединение левых (двусторонних) И. снова будет левым (двусторонним) И. Для колец и алгебр теоретико-множественное объединение И. не обязано быть И. Пусть I1, I2- левые или двусторонние И. в кольце (алгебре) А. Суммой идеалов I1 и I2 наз. И. он является минимальным И . в А, содержащим I1 и I2. Относительно операций пересечения и взятия суммы все (левые или двусторонние) И. кольца (или алгебры) образуют решетку. Многие классы колец и алгебр определяются условиями на их И. или решетку И. (см. Главных идеалов кольцо, Артиново кольцо, Нестерове кольцо). И. мультипликативной полугруппы кольца может и не быть И. кольца. Полугруппа Аявляется группой тогда и только тогда, когда Ане содержит (как левых, так и правых) И., отличных от самой А. Таким образом, обилие И. в полугруппе характеризует отчасти степень отличия данной полугруппы от группы. Для k -алгебры А(алгебры над полем к)И. кольца Аможет, вообще говоря, не быть И. алгебры А. Напр., если Аесть k-алгебра с нулевым умножением, то множество всех И. кольца Асовпадает с множеством всех подгрупп аддитивной группы А, а множество всех И. алгебры Асовпадает с множеством всех подпространств векторного k-пространства А. Однако в случае, когда А- алгебра с единицей, оба эти понятия И. совпадают. Поэтому многие результаты одинаково формулируются как для колец, так и для алгебр. Кольцо, не имеющее двусторонних И., наз. просты м. Кольцо без собственных односторонних И. является телом. Левые И. кольца Аможно определить также, как подмодули левого А-модуля А. Нек-рые свойства колец не меняются при замене левых И. на правые. Напр., Джекобсона радикал, определенный с помощью левых И., совпадает с радикалом Джекобсона, определенным с помощью правых И. С другой стороны, нётерово слева кольцо может не быть нётеровым справа. Изучение И. коммутативных колец — важная часть коммутативной алгебры. С любым коммутативным кольцом с единицей связано топологич. пространство Spec A, точками к-рого являются все простые И. кольца А, отличные от А. При этом существует взаимно однозначное соответствие между всеми И. кольца Аи всеми замкнутыми подмножествами пространства Spec A. В коммутативной алгебре встречается понятие И. поля, точнее И. поля относительно кольца. При этом кольцо Акоммутативно, с единицей и без делителей нуля, а поле Q- поле частных кольца А. ом поля Qназ. ненулевое подмножество являющееся подгруппой аддитивной группы поля Q, выдерживающее умножения на элементы из А(т. е. для любых и такое, что существует элемент для к-рого И. наз. целым, если он содержится в А (и тогда он служит обычным И. кольца А), в противном случае I наз. дробным идеалом. ом решетки наз. непустое подмножество Iэлементов решетки, удовлетворяющее условиям: 1) если то 2) если то Дуальный идеал (или фильтр) решетки определяется двойственным образом ( а,, И. решетки, упорядоченные включением, сами образуют решетку. Максимальный элемент в множестве всех собственных И. решетки наз. максимальным идеалом. Если f — гомоморфизм решетки в частично упорядоченное множество с нулем, то полный прообраз нуля является И. Он наз. ядерным идеалом гомоморфизма f. И. Sрешетки Lназ. стандартным, если для любых неравенство a<b+s влечет a=x+t, где и Всякий стандартный И. является ядерным. Ядерный И. решетки с относительными дополнениями (см. Решетка с дополнениями )является стандартным. И. I наз. простым, если из следует, что или Каждое из следующих условий эквивалентно простоте для И. Iрешетки L:. а) дополнение является фильтром; б) I — полный прообраз нуля при нек-ром гомоморфизме решетки Lна двухэлементную решетку. В дистрибутивной решетке каждый максимальный И. прост. Не вполне согласовано с предыдущим определение И. в частично упорядоченном множестве. А именно, вместо условия 1) требуется выполнение более сильного условия: для всякого подмножества элементов, лежащих в И., их объединение, если оно существует в этом частично упорядоченном множестве, также лежит в I.. ом объекта Акатегории с нулевыми морфизмами наз. подобъект(U,m) объекта Атакой, что m=кеra для нек-рого морфизма Этот И. можно отождествить с совокупностью всех мономорфизмов, являющихся ядрами нек-рого морфизма (см. также Нормальный мономорфизм). Двойственным образом определяется коидеал объекта категории. Понятие И. для W-групп является частным случаем понятия И. объекта категории. Левым идеалом категории наз. класс морфизмов, содержащий вместе со всяким своим морфизмом j все произведения aj, где если они определены в категории М. Двойственным образом определяется правый идеал категории. Двусторонний идеал — класс морфизмов, являющийся как левым, так и правым И. Лит.:[1] Борович З. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972; [2] Бурбаки Н., Коммутативная алгебра, пер. с франц., М., 1971; [3] Ван-дер-Варден Б. Л., Алгебра, пер. с нем., М., 1976; [4] Клиффорд А., Престон Г., Алгебраическая теория полугрупп, пер. с англ., т. 1-2, М., 1972; [5] Курош А. Г., Лекции по общей алгебре, 2 изд., М., 1973; [6] Ляпин Е. С, Полугруппы, М., 1960; [7] Скорняков Л. А., Элементы теории структур, М., 1970; [8] Цаленко М. Ш., Шульгейфер Е. Г., Основы теории категорий, М., 1974. Л. В. Кузьмин, Т. С. Фофанова, М. III. Цаленко. Т- свободной ассоциативной алгебры — вполне характерпстнч. идеал этой алгебры, т. е. идеал, инвариантный относительно всех эндоморфизмов. Совокупность полиномиальных тождеств произвольной ассоциативной алгебры над полем Fобразует Т-И. в счетно порожденной свободной алгебре F[X], Х= . Поэтбму существует взаимно однозначное соответствие между Т-И. алгебры F [X]и многообразиями ассоциативных алгебр над полем F. Если поле Fимеет характеристику 0, то для любого Т-И. существует такое натуральное число.. п=п( Т), что элементами Тявляются нек-рые степени элементов М n(F). и только они, где М n(F)- идеал тождеств алгебры квадратных матриц F п порядка пнад F. В этом случае Т-И. можно определить также как (односторонний) идеал, замкнутый относительно всех дифференцирований свободной алгебры. Фактор-алгебра F[Х]/Т является PI -алгеброй, совокупность полиномиальных тождеств к-рой совпадает с Т. Она наз. относительно свободной алгеброй Т-И. тождеств Т(и является свободной алгеброй многообразия алгебр, определяемого тождествами из Т). Алгебра F[Х]/Т не имеет делителей нуля тогда и только тогда, когда T=Mn(F)для некоторого натурального числа п. Всякий Т-И. Тсвободной ассоциативной алгебры является примерным идеалом. Т-И. свободной ассоциативной алгебры с бесконечным множеством порождающих над полем нулевой характеристики образуют свободную полугруппу относительно операции умножения идеалов. В этом случав Т-И. можно определить как идеалы, инвариантные относительно всех автоморфизмов свободной алгебры. Вопрос о том, обладает ли всякий Т-И. алгебры F[X]конечным числом образующих как вполне характеристич. идеал (проблема Шпехта), открыт (1977). См. также Колец многообразие. По аналогии с ассоциативным случаем Т-И. можно определить в неассоциативных алгебрах (лиевых, альтернативных и др.). Лит.:[1] Procesi С, Rings with polynomial identities, N.Y., 1973; [2] Джекобсон Н., Строение колец, пер. с англ., М., 1961; [3] Херстейн И., Некоммутативные кольца, пер. с англ., М., 1972; [4] Amitsur S., "J. London. Math. Soc", 1955, v. 30, p. 470-75; [5] Specht W., "Math. Z.", 1950, Bd 52, S. 557-89; [6] Bergman G., L e w i n J., "J. London. Math. Soc", 1975, ser. 2, v. 11, Ni1, p. 21-31. В. Н. Латышев.

Источник: Математическая энциклопедия на Gufo.me


Значения в других словарях

  1. Идеал — I Идеа́л (франц. idéal, от греч. idéa — идея, первообраз) идеальный образ, определяющий способ мышления и деятельности человека или общественного класса. Формирование природы сообразно... Большая советская энциклопедия
  2. ИДЕАЛ — ИДЕАЛ (фр. idéal, лат. idealis, от греч. ἰδέα – вид, образ, идея) – 1) в общеупотребительном смысле: (а) высшая степень ценного или наилучшее, завершенное состояние какого-либо явления... Новая философская энциклопедия
  3. идеал — • Возвышенный (Потапенко). • Высокий (Льдов). • Заветный (Жадовская). • Лучезарный (Майков). • Немеркнущий (Ратгауз). • Светлый (Жуковский, Чюмина). • Святой (Надсон). • Чистый (Плещеев). Словарь литературных эпитетов
  4. Идеал — Идеал. [...] в период расцвета своей работы над национально-реалистическим стилем Пушкин решительно противопоставляет «высокопарным мечтаньям» своей весны, теории возвышенного предмета «прозаические бредни» реализма, поэзию живой жизни. Историко-этимологический словарь
  5. Идеал — (франц. idеal, от греч. idеa — идея, первообраз) 1. в общеупотребительном смысле: а) высшая степень ценного или наилучшее, завершённое состояние к.-л. Педагогический терминологический словарь
  6. Идеал — (греч. idea – идея, понятие, представление) совершенство; совершенный образец какого-либо объекта, явления, события, процесса с точки зрения конкретного человека или группы людей; высшая цель деятельности. Словарь по культурологии
  7. идеал — Совершенство, верх, образец, мечта, несбыточное желание см. >> образец, цель Словарь синонимов Абрамова
  8. идеал — орф. идеал, -а Орфографический словарь Лопатина
  9. ИДЕАЛ — ИДЕАЛ (от лат. idealis — идеальный) — англ. ideal; нем. Ideal. Представление о совершенстве, к-рое, будучи высшей целью и образцом, определяет способ мышления и деятельности человека, обществ, класса. И. носят истор. Социологический словарь
  10. ИДЕАЛ — ИДЕАЛ (греч. idea — образец, норма) — идеальный образ, имеющий нормативный характер и определяющий способ и характер поведения, деятельности человека или социальной группы. В мировоззрении людей регулирующая функция... Новейший философский словарь
  11. идеал — Немецкое – Ideal. Латинское – idea (видеть, созерцать). Слово проникло в русский язык из немецкого в начале XVIII в. Интересно, что в России первоначально появилось прилагательное «идеальный»... Этимологический словарь Семёнова
  12. идеал — ИДЕАЛ а, м. idéal m. 1. Высшая, руководящая деятельностью общества или личности цель, которой стремятся достичь; предел чьих-л. стремлений, желаний. БАС-1. Другого идеалы мучат, Как женщину на сносях пучат, — Родится мышь — и чуть живет! 1817. Долг. Словарь галлицизмов русского языка
  13. идеал — идеал м. 1. То, что составляет высшую — обычно практически недостижимую — цель деятельности или устремлений. 2. Совершенное воплощение чего-либо. Толковый словарь Ефремовой
  14. Идеал — Представление высшего совершенства в каком-нибудь отношении. В этом широком смысле слово И. применяется одинаково и к отвлеченным и конкретным предметам: И. добра, И. женской красоты, И. государства, И. гражданина и т. д. В этом общем смысле... Энциклопедический словарь Брокгауза и Ефрона
  15. идеал — -а, м. 1. Высшая цель, к которой стремятся люди и которая руководит их деятельностью. Возвышенные идеалы. □ Какие идеалы могут волновать души этих людей? Салтыков-Щедрин, Письма к тетеньке. Малый академический словарь
  16. идеал — ИДЕАЛ (от греч. i5ea, лат. idealis — понятие, образ, представление) — в широком смысле образец, прообраз, высшая цель стремлений, совершенное воплощение чего-либо, представление о высшем совершенстве в каком-либо отношении. Смысл понятия... Энциклопедия эпистемологии и философии науки
  17. идеал — сущ., м., употр. сравн. часто (нет) чего? идеала, чему? идеалу, (вижу) что? идеал, чем? идеалом, о чём? об идеале; мн. что? идеалы, (нет) чего? идеалов, чему? идеалам, (вижу) что? идеалы, чем? идеалами, о чём? об идеалах... Толковый словарь Дмитриева
  18. идеал — Заимств. в конце XVIII в. из франц. яз., где idéal < лат. idealis, суф. производного от idea (см. идея). Этимологический словарь Шанского
  19. идеал — ИДЕАЛ -а; м. [франц. idéal] 1. Высшая цель, к которой стремятся люди; то, что составляет высший смысл их деятельности, духовных устремлений. Жизненный и. Возвышенные, гуманистические идеалы. Либеральный идеал организации общества. 2. чего или с опр. Толковый словарь Кузнецова
  20. идеал — Иде/а́л/. Морфемно-орфографический словарь
  21. идеал — Идеала, м. [от греч. idea – идея] (книжн.). Высшая, трудно достижимая степень совершенства в чем-н., мыслимый предел стремлений, желаний. Идеал красоты. Идеал человека. В идеале не то, что в действительности. Большой словарь иностранных слов
  22. ИДЕАЛ — ИДЕАЛ (франц. ideal) — образец, нечто совершенное, высшая цель стремлений. Большой энциклопедический словарь
  23. идеал — ИДЕ’АЛ, идеала, ·муж. (от ·греч. idea — идея) (·книж. ). Высшая, трудно достижимая степень совершенства в чем-нибудь, мыслимый предел стремлений, желаний. Идеал красоты. Идеал человека. В идеале не то, что в действительности. Толковый словарь Ушакова
  24. идеал — См. идея Толковый словарь Даля
  25. идеал — ИДЕАЛ, а, м. 1. То, что составляет высшую цель деятельности, стремлений. Высокие гуманистические идеалы. 2. чего и чей. Совершенное воплощение чего-н. И. доброты. Этот человек мой и. 3. Наилучший вид, элитный образец чего-н. (спец.). Толковый словарь Ожегова
  26. идеал — (иноск.) — предмет мечты, представляемый образцом совершенства и вообще — желательный Идеалист — наклонный к мечтанию о более или менее несбыточном Ср. Я останусь до конца верна... чему? — идеалу, что ли? Да, идеалу... Фразеологический словарь Михельсона