радиационно-химическая технология

РАДИАЦИОННО-ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ (РХТ)

область общей хим. технологии, посвященная исследованию процессов, протекающих под действием ионизирующих излучений (ИИ), и разработке методов безопасного и экономически эффективного использования последних в народном хозяйстве, а также созданию соответствующих устройств (аппаратов, установок). РХТ применяется для получения предметов потребления и средств производства, для придания материалам и готовым изделиям улучшенных или новых эксплуатац. свойств, повышения эффективности с.-х. производства, решения некоторых экологии, проблем и др. Составные части в РХТ: физ.-хим: основы радиац.-хим. процессов и радиац.-хим. аппаратостроение.

Исследования физ.-хим. особенностей радиац.-хим. процессов показали, что ИИ-высокоэффективный инициатор хим. реакций, дает возможность создавать заданное распределение центров инициирования в облучаемом рсакц. объеме, причем скорость инициирования не зависит или слабо зависит от температуры и сравнительно легко регулируется посредством изменения мощности поглощенной дозы излучения (см. радиационно-химические реакции). Др. преимущества радиац.-хим. процессов перед процессами общей хим. технологии: возможность их проведения при более низких давлениях и температурах и при меньшем числе технол. стадий, отсутствие хим. инициаторов и катализаторов, что приводит к уменьшению токсичности, взрыво- и пожароопасности и позволяет получать материалы с более высокой степенью чистоты.

Различают след. направления РХТ: 1) радиац. модифицирование (т. наз. сшивание) полимеров, напр., для получения проводов и кабелей с термостойкой полиэтиленовой изоляцией, термически и химически стойких полиэтиленовых труб и др. санитарно-техн. изделий, заменяющих металлические в системах горячего водоснабжения, и др.; 2) радиац. вулканизация эластомеров (РТИ, детали автомобильных шин, силоксановые самослипающиеся термостойкие изоляц. материалы и др.); 3) радиац. полимеризация и сополимеризация мономеров и олигомеров на поверхностях (отверждение покрытий на металлич. и древесных изделиях, получение гранулир. удобрений с полимерным покрытием), а также в гомогенных (синтез полиакриламида, полиэтилена и др.) и в гетерог. системах (напр., в древесине, бетоне, туфе). В последнем случае получают бетон-полимерные, древесно-полимерные и подобные изделия, обладающие термич. и хим. стойкостью, ценными мех. и др. свойствами, позволяющими эффективно использовать их в строительстве; 4) радиац.-хим синтез — окисление, хлорирование, сульфохлорирование, сульфоокисление, теломеризация орг. соединений и др.; 5) радиац. деструкция, напр., фторорг. полимеров с целью получения добавок к смазочным веществам, целлюлозы в отходах лесной и деревообрабатывающей промышленности и отходов сельского хозяйства (в частности, для получения кормовых добавок); 6) радиац. обеззараживание и очистка прир. и сточных вод, твердых отходов и отходящих газов; 7) радиац. модифицирование неорг. материалов (полупроводников, катализаторов и др.).

Задачи физ.-хим. исследований при разработке производств. процессов: изучение механизма и кинетики радиа-ционно-хим. процессов в зависимости от температуры, давления, мощности поглощенной дозы и др. параметров, а также определение радиационно-химического выхода G. По величине G различают: 1) цепные процессы, в которых значение G (до 105–106) определяется в осн. не первичными актами, а закономерностями развития цепей; 2) процессы с небольшой высотой энергетич. барьера и короткими цепями (10 < G < 20), включая высокоэффективные процессы с небольшими значениями G, которые приводят к существ. изменениям макроскопич. свойств материалов; 3) энергоемкие процессы с высоким энергетич. барьером (1 < G <; 10). Эффективная реализация энергоемких радиац.-хим. процессов возможна лишь с использованием кинетич. энергии осколков в момент деления тяжелых ядер (т. наз. хемоядерные процессы), что связано со значит. техн. трудностями (включая проблемы радиац. безопасности). Поэтому практич. значение имеют лишь процессы первых двух групп, источниками ИИ в которых служат радионуклиды или потоки электронов, генерируемые в ускорителях.

Задачи радиац.-хим. аппаратостроения: расчет и разработка принципов конструирования радиац.-хим. аппаратов и установок для наиб. эффективного использования мощности ионизирующего излучения при выполнении заданных технол. параметров, обеспечении необходимой надежности и гарантии радиац. безопасности обслуживающего персонала и потребителей продукции; расчет и эксперим. определение полей поглощенных доз (технол. дозиметрия), мощности ИИ, необходимой для обеспечения заданной производительности и др. параметров аппаратов, а также создание наиб. экономичных источников излучения и определение экономич. эффективности радиац.-хим. процессов. Радиац. производительность аппарата Qp (кГр∙т в год) связана с мощностью источника излучения W (кВт) уравнением:

Qp = 0,86ηTуW,

где η-кпд аппарата, %; Tу-число рабочих суток установки в год. Весовая производительность Q(T) = QpD−1, где D (кГр)-поглощенная доза излучения, необходимая для получения радиац. продукции с заданными свойствами.

Радиац.-хим. установки состоят из рабочей камеры и хранилища для радионуклидов (если они служат источником излучения) с радиац. защитой, радиац.-хим. аппарата, оборудования для подготовки и транспортировки объектов облучения и для обработки и складирования конечных продуктов, пульта управления, систем блокировки и сигнализации, обеспечивающих безопасность персонала. Аппарат имеет облучатель с источником излучения и рсакц. объем, в котором осуществляется взаимод. излучения с объектами. Различают аппараты гетерогенного (наиб. распространены) и гомогенного типов, в которых источники излучения соотв. изолированы от облучаемых веществ или смешаны с ними. В перемешиваемых объектах (напр., в жидкостях, газах, во взвешенных слоях) необходимая равномерность облучения обеспечивается гидродинамич. режимом; в "блочных" объектах, в которых отдельные части блока в процессе облучения не могут изменять своего положения друг относительно друга, заданная равномерность поля поглощенных доз обеспечивается конфигурацией облучателя, распределением источников излучения относительно реакц. объема аппарата и перемещением объектов относительно облучателя.

В зависимости от назначения, типа и мощности ИИ рабочие камеры м. б. небольшими (единицы, десятки дм3), с местной (свинцовой, чугунной, стальной) защитой, позволяющей размещать аппараты практически в любом производств. помещении, либо-крупногабаритными (десятки-сотни дм3). Для последних требуется строительство спец. помещений с толстостенной (обычно бетонной) защитой с лабиринтными входами, защитными дверями и др.

Имеются универсальные установки, предназначенные для исследований радиац. эффектов в веществах в любых агрегатных состояниях в широком диапазоне температур и давлений, а также опытно-пром. и пром. установки для производства определенной продукции или для проведения процессов (напр., для очистки и обеззараживания сточных вод).

В большинстве радиац. установок ИИ служат потоки электронов (из ускорителей), т. к. они обладают рядом преимуществ перед у-излучением радионуклидов (60Со, Cs): высокая плотность потока энергии излучения, приводящая к большим мощностям поглощенных доз и, как следствие, к малым временам облучения, что дает возможность, в частности, сократить производств. площади, проводить радиац.-хим. процесс на воздухе; относительно низкая стоимость облучения; отсутствие радиац. опасности установки в выключенном состоянии (при монтаже, ремонте и т. п.).

В связи с тем, что ускоренные электроны (и р-излучение радионуклидов) обладают сравнительно небольшим пробегом в веществах, применение этих излучений возможно лишь при проведении процессов в тонких слоях (полимерные ленты, пленки, тонкостенные трубки, покрытия и др.) и в газовых средах.

Проникающая способность γ-излучения значительно выше (напр., слой половинного ослабления широкого пучка γ-излучения 60Со в воде составляет ок. 27 см, в железе 3,5 см), что позволяет проводить радиац.-хим. процессы в крупногабаритных объектах, помещенных в герметичные (в т. ч. металлические) оболочки под давлением, в вакууме и др. условиях.

Энергия ускоренных электронов м. б. трансформирована в энергию тормозного излучения, обладающего такой же проникающей способностью, как γ-излучение. Однако такое использование ускорителей представляет ограниченный интерес для РХТ, поскольку для наиб. мощных, надежных и экономичных ускорителей (с энергией 1–3 МэВ) коэф. конвертирования энергии электронов в энергию тормозного излучения составляет всего 5–10% и поэтому стоимость облучения возрастает в 10–20 раз по сравнению с использованием потоков электронов.

Пром. установки создаются с ускорителями электронов (энергия 0,5–3 МэВ, мощность до 100 кВт) и с долгоживу-шими радионуклидными источниками у-излучения мощностью до ~ 50 кВт (активность нуклидов ок. 11∙1016Бк для 60Со и ок. 44∙1016 Бк для 137Cs). Установки с наиб. мощными (до 104 кВт) источниками у-излучения м. б. реализованы путем создания при энергетич. ядерных реакторах (при обязат. условии обеспечения их надежности и безопасности) т. наз. радиац. контуров, в которых циркулируют рабочие вещества, делящиеся (ядерное топливо) или неделящиеся (сплавы In — Ga; Na) под действием нейтронов. При прохождении рабочих веществ через ядерный реактор в них генерируются радионуклиды (в т. ч., что особенно важно, короткоживу-щие) с у-излучением, которое используется для инициирования и проведения радиац.-хим. процессов при прохождении рабочих веществ через радиац.-хим. установку. Такое у-излучение в 5–10 раз дешевле, чем γ-излучение наиб. распространенного радионуклида 60Со. Благодаря комплексному использованию (для целей энергетики и РХТ) ядерного горючего значительно уменьшается стоимость тепла, генерируемого ядерным реактором, и, следовательно, удешевляется обычная хим. продукция, получаемая при использовании этого тепла или электроэнергии АЭС.

Лит.: Радиащюнно-химическая технология, в. 1–25, М., 1979–89; Использование атомной энергии в химической технологии. Сб. научных трудов, М., 1983; Пикаев А. К., Современная радиационная химия. Твердое тело и полимеры. Прикладные аспекты, М., 1987; Брегер А.Х., "Ж. Всес. хим. общества им. Д. И. Менделеева", 1990, № 6, с. 717–24.

А. Х. Брегер

Источник: Химическая энциклопедия на Gufo.me