межмолекулярные взаимодействия

МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ

взаимод. молекул между собой, не приводящее к разрыву или образованию новых хим. связей. М. в. определяет отличие реальных газов от идеальных, существование жидкостей и мол. кристаллов. От М. в. зависят мн. структурные, спектральные, термодинамич., теплофиз. и др. свойства веществ. Появление понятия М. в. связано с именем Й. Д. Ван-дер-Ваальса, который для объяснения свойств реальных газов и жидкостей предложил в 1873 уравнение состояния, учитывающее М.в. (см. Ван-дер-Ваальса уравнение). Поэтому силы М.в. часто называют ван-дер-ваальсовыми.

Виды М.в. Основу М.в. составляют кулоновские силы взаимод. между электронами и ядрами одной молекулы и ядрами и электронами другой. В экспериментально определяемых свойствах вещества проявляется усредненное взаимод., которое зависит от расстояния R между молекулами, их взаимной ориентации, строения и физ. характеристик (ди-польного момента, поляризуемости и др.). При больших R, значительно превосходящих линейные размеры l самих молекул, вследствие чего электронные оболочки молекул не перекрываются, силы М. в. можно достаточно обоснованно подразделить на три вида-электростатические, поляризационные (индукционные) и дисперсионные. Электростатич. силы иногда называют ориентационными, однако это неточно, поскольку взаимная ориентация молекул может обусловливаться также и поляризац. силами, если молекулы анизотропны.

При малых расстояниях между молекулами (R ~ l) различать отдельные виды М. в. можно лишь приближенно, при этом, помимо названных трех видов, выделяют еще два, связанные с перекрыванием электронных оболочек, — обменное взаимодействие и взаимодействия, обязанные переносу электронного заряда. Несмотря на некоторую условность, такое деление в каждом конкретном случае позволяет объяснять природу М. в. и рассчитать его энергию.

Э н е р г и я э л е к т р о с т а т и ч е с к о г о в з а и м о д е й с т в и я Vэл-ст представляет собой энергию кулоновского взаимод., вычисленную в предположении, что распределение зарядовой плотности отвечает изолир. молекулам (R = межмолекулярные взаимодействия). В общем случае электрич. потенциал вокруг молекулы изменяется не только по абс. величине, но и по знаку. Если взаимная ориентация двух молекул такова, что область положит. потенциала одной из них приблизительно совпадает с областью, в которой локализован отрицат. заряд другой, то Vэл-ст < 0, т. е. электростатич. взаимод. молекул ведет к их притяжению. При R>l энергия Vэл-ст становится равной сумме энергий взаимод. мультиполей (диполей, квадруполей и т. д.); для полярных молекул главный вклад дает обычно диполь-дипольное взаимодействие. Его энергия Vдип-дип может иметь разный знак в зависимости от ориентации диполей. При ориентации молекул А и В, соответствующей минимуму энергии взаимод., Vдип-дип = — 2pApB/R3, где pА и рB — дипольные моменты молекул А и В соответственно. В газовой фазе, где молекулы почти свободно вращаются, более вероятны такие их взаимные ориентации, которые отвечают притяжению диполей. При этом средняя энергия взаимод. равна:

межмолекулярные взаимодействия. Рис. 2

где Табс. температура, k-постоянная Больцмана. При фиксированной ориентации молекул, напр. в твердом теле, Vдип-дип слабо зависит от Т и изменяется пропорционально R−3. Если взаимодействующие молекулы обладают квадрупольными или более высокого порядка электрич. моментами, в выражение для Vэл-ст входят также слагаемые, отвечающие взаимод. этих мультиполей. По этой причине, в частности, энергетически наиб. выгодная ориентация молекул может отличаться от оптимальной ориентации их дипольных моментов.

П о л я р и з а ц и о н н о е в з а и м о д е й с т в и е обусловлено деформацией электронной оболочки одной молекулы под влиянием электрич. поля другой, что всегда приводит к понижению энергии (притяжению молекул). При больших расстояниях между нейтральными молекулами главный вклад в поляризац. энергию Vпол дает взаимод. постоянного диполя полярной молекулы с индуцированным диполем другой. Поэтому это взаимод. иногда называют индукционным. Согласно формуле Дебая,

межмолекулярные взаимодействия. Рис. 3

где aА и aB- средние статич. поляризуемости молекул А и В соответственно. Если поляризуемости молекул анизотропны, то в выражении для Vпол появляются дополнит. члены, зависящие от взаимной ориентации молекул.

М.в., связанное с переносом электронного заряда с одной молекулы на другую, близко по физ. смыслу к поляризац. М. в. Перенос заряда происходит при перекрывании электронных оболочек молекул, если их сродство к электрону различно. Перенос заряда можно наглядно рассматривать как "далеко зашедшую" поляризацию, однако энергия М. в., связанного с переносом заряда, |V|п.з по своему абс. значению существенно меньше | Vпол | и очень быстро (экспоненциально) стремится к нулю с увеличением R. Строго разделить вклады поляризации и переноса заряда в энергию М. в. затруднительно, поэтому часто вычисляют суммарную величину, обозначаемую просто Vпол.

Дисперсионное М.в. определяется корреляцией движения электронов двух взаимодействующих молекул, в результате чего среднее расстояние между электронами этих молекул несколько увеличивается. Это приводит к уменьшению энергии их взаимодействия, т. е. к притяжению молекул. Дисперсионное взаимод. имеет универсальный характер: оно существует между любыми молекулами. Энергия дисперсионного взаимод. Vдисп двух атомов или сферически симметричных молекул при R>l приближенно описывается формул о й Л о н д о н а:

межмолекулярные взаимодействия. Рис. 4

где IА и IB-потенциалы ионизации молекул А и В соответственно. Для молекул иной формы зависимость Vдисп от R и от их физ. характеристик оказывается более сложной (подробнее см. дисперсионное взаимодействие). При близких расстояниях (R ~ l) дисперсионное М. в. усложняется и обычно наз. корреляционным. Его энергия V м. б. вычислена методами квантовой химии. При сверхдальних расстояниях между молекулами (порядка 100 нм) на их взаимод. начинает сказываться конечность скорости распространения электрич. сигнала (скорости света), в силу чего заряды взаимод. не мгновенно, а с некоторым запаздыванием; Vдисп оказывается пропорциональным R−7.

Энергия о б м е н н о г о в з а и м о д е й с т в и я молекул Vобм обусловлена тем, что в соответствии с принципом Паули в одном и том же квантовом состоянии не могут находиться два электрона с одинаковыми спинами. Вследствие этого электронная плотность в пространстве между молекулами при перекрывании их электронных оболочек уменьшается (подробнее см. обменное взаимодействие).

Полная энергия М.в., или межмолекулярный потенциал, V приблизительно равняется сумме вкладов отдельных видов М.в.:

межмолекулярные взаимодействия. Рис. 5

При R > l последний член обращается в нуль, а первые три можно вычислить по формулам (1)-(3). При малых расстояниях между молекулами эти формулы, строго говоря, не пригодны для количеств. определения V, однако во мн. случаях они дают правильную качеств. картину М. в. Если обе или одна из молекул имеет электрич. заряд, то формула (4) остается в силе, однако каждое слагаемое изменится и будет отражать действие дополнит. заряда одной молекулы на другую.

При некотором расстоянии R = Re и подходящей взаимной ориентации молекул А и В силы притяжения становятся равными силам отталкивания, потенциал V(R)имеет минимум и система находится в равновесии. Если при этом глубина потенц. ямы больше нулевой энергии межмол. колебания, то молекулы образуют устойчивый комплекс (ассоциат), что подтверждается спектральными данными. Расчеты показывают, что в тех случаях, когда молекулы полярны (или имеют электрич. заряд), наибольший по абс. величине вклад в энергию притяжения при Rмежмолекулярные взаимодействия. Рис. 6Re дает Vэл-ст. Величина Vобм того же порядка, но она приводит к отталкиванию молекул. Вклады Vпол и V дисп составляют при этом, как правило, от 20 до 40% суммарной энергии притяжения; Vдисп(Vкорр ) играет существ. роль только для М.в. неполярных или слабо полярных молекул (с малым дипольным моментом). Типичная зависимость от R полной энергии взаимод. полярных молекул и отдельных ее вкладов приведена на рис. 1 для димера воды.

межмолекулярные взаимодействия. Рис. 7

межмолекулярные взаимодействия. Рис. 8

В зависимости от энергии диссоциации различают слабые и сильные мол. комплексы. Наименее устойчивые комплексы, наблюдаемые при низких температурах, образуют атомы инертных газов. Так, энергия диссоциации комплекса He•Ne равна 0,02 кДж/моль, комплекса Ar•Ar-1,0 кДж/моль (рис. 2). Низкую энергию диссоциации (1–10 кДж/моль) имеют также комплексы неполярных молекул, напр. (H2)2, (N2)2, (C2H4)2, бензол∙(Hal)2 и др. Более устойчивые комплексы образуются полярными молекулами. Примером очень прочного ассоциата может служить C5H5N•AlBr3, энергия диссоциации которого равна 190 кДж/моль, т. е. сравнима с энергией хим. связи. В газовой фазе существуют не только димеры (HF)2, (H2O)2, HF•H2O и др., но и комплексы из трех и большего числа молекул, напр. (HF)3, (HF)6, (H2O)3, (NH3)3. Для таких ассоциатов циклич. структура, как правило, более устойчива, чем цепочечная. Особую группу образуют ион-молекулярные комплексы, напр. Na+ •(NH3)m, F•(H2O)m (m = 1, 2, ..., 6), для которых энергия отрыва одного лиганда составляет от 80 до 150 кДж/моль.

Специфические межмолекулярные взаимодействия. Частный случай М. в. — водородная связь. От М.в. полярных молекул, не содержащих атомов Н, она в целом не отличается ни по энергии диссоциации (10–100 кДж/моль), ни по относит. величине разл. вкладов в межмол. потенциал; во всех случаях главный вклад в энергию притяжения дает Vэл-ст (кривая на рис. 1 относится к Н-связи НО—Н ...OH2). Специфично для водородной связи сильное взаимод. разл. колебат. степеней свободы в комплексах. Это приводит, в частности, к длинноволновому смещению и уширению ИК полосы АН-группы (напр., О—Н).

Важный вид мол. комплексов — комплексы с переносом заряда. В их основном квантовом состоянии перенос электронного заряда не более, чем при обычных видах М. в., однако при возбуждении происходит значит. перенос заряда от одной молекулы (донора) к другой (акцептору); в спектре поглощения появляется дополнит. полоса в ближней УФ области. Пример — мол. комплексы иода (акцептор) с аминами NR3. ИК спектры комплексов с переносом заряда сходны со спектрами комплексов с водородной связью.

Мол. комплексы образуются и при т. наз. резонансном взаимодействии. Оно возникает, как правило, между одинаковыми молекулами, если сначала (при R > Re) одна из них находится в возбужденном состоянии, а другая — в основном состоянии. При сближении молекул возникают два возбужденных уровня энергии, смещенных в разные стороны по отношению к энергии исходного возбужденного состояния. Величину этого сдвига называют резонансной энергией. Энергия ниж. уровня часто имеет минимум при некотором R, что соответствует образованию квазиравновесного комплекса (димера) в возбужденном состоянии (рис. 3).

межмолекулярные взаимодействия. Рис. 9

Рис. 3. Кривые потенциальной энергии V для эксимера; (А + В)-основное состояние, (А* + В)-первое электронно-возбужденное состояние. Стрелки указывают пути излучат. перехода из верхнего состояния в нижнее.

Такой комплекс наз. эксимером. Эксимеры с временами жизни порядка 10−8 с наблюдаются, напр., в растворах красителей. Сходное расположение уровней энергии может возникать и при сближении неодинаковых молекул; образующиеся при этом возбужденные комплексы наз. эксип-лексами.

Многочастичные М.в. Для системы, состоящей более чем из двух молекул, полная энергия М. в. отличается от суммы парных взаимодействий (неаддитивность). Так, при взаимодействии трех частиц А, В, С энергию М.в. можно записать в след. виде:

межмолекулярные взаимодействия. Рис. 10

где первые три слагаемых представляют собой энергии парных М.в., а последний член-энергию тройного М.в., которое обусловливает отступление от аддитивности. Влияние многочастичных взаимод. на свойства веществ обнаруживается экспериментально даже в случае инертных газов. Например, равновесные расстояния различны в димерах (в газовой фазе) и в кристаллах вследствие неаддитивности обменной и дисперсионной энергий (электростатич. энергия М.в. всегда аддитивна). Наиб. заметно влияние многочастичных взаимод. для комплексов полярных молекул и для ион-молекулярных комплексов. В них неаддитивность М. в. обусловливают гл. обр. поляризационные силы, причем абс. величина и знак отклонения от аддитивности в энергии зависят от взаимного расположения частиц. Механизм многочастичного взаимод. полярных молекул можно пояснить на примере воды. При последоват. расположении трех молекул

межмолекулярные взаимодействия. Рис. 11

молекула В под влиянием диполя молекулы А поляризуется и ее атомы Н приобретают дополнит. положит. заряд. Благодаря этому взаимод. В с С становится несколько более сильным, чем при парном взаимодействии. При переходе от газовой фазы, содержащей димеры А∙В, к конденсированной фазе величины Re уменьшаются, a |V| возрастают. Наряду с многочастичным взаимод. в этот эффект дает вклад также парное диполь-дипольное взаимод. молекул, принадлежащих разным димерам. Установлено экспериментально, что, напр., расстояние Re (F...F) в кристаллах HF меньше на ~ 10%, а |V| больше на ~ 39%, чем в газовой фазе; для воды соотв. значения составляют 6% и ~50%.

Модельные межмолекулярные потенциалы. При больших расстояниях между молекулами (R > l) зависимость потенциала парного М.в. от R определяют методами возмущений теории, напр. формулы (1)-(3). При расстояниях, близких к равновесному Re, зависимость V от R м. б. определена численными методами квантовой химии. Вместе с тем для решения мн. практич. задач важно знать аналит. зависимость V(R). Предложено неск. разл. модельных функций. Эти функции должны удовлетворять трем условиям общего характера: 1) при R =межмолекулярные взаимодействия. Рис. 12 V= 0, 2) при R = Re V(R)имеет минимум, 3) при R < Re V быстро возрастает (отталкивание). Параметры, входящие в выражение для модельного потенциала, выбирают так, чтобы вычисленные с его помощью значения физ. величин, зависящих от М. в., совпадали или были достаточно близки к значениям, определяемым экспериментально.

Одним из распространенных потенциалов является п от е н ц и а л М о р с а (М о р з е):

межмолекулярные взаимодействия. Рис. 13

В него входят три эмпирич. параметра: Ve, b и Re. Параметр Ve равен глубине потенц. ямы, связанной с энергией диссоциации V0 мол. комплекса соотношением: Ve = V0 + 1/2 hv, где 1/2 hv — нулевая энергия межмол. колебаний (v- частота этих колебаний, h — постоянная Планка) (см. рис. 2); параметр b определяется из условия, чтобы функция (5) давала правильное значение частоты v; расстояние Re можно определить, напр., из вращат. микроволнового спектра ассоциа-та или одним из дифракц. методов.

На больших расстояниях R функция (5) экспоненциально стремится к нулю, тогда как в действительности потенциал М. в. убывает по степенному закону [согласно формулам (1)-(3) как R−6]. Эту закономерность отражает п о т е н ц и а л Л е н-н а р д-Д ж о н с а:

межмолекулярные взаимодействия. Рис. 14

Согласно (6), энергия отталкивания возрастает с уменьшением R пропорционально R−12. Квантовохим. расчеты показывают, однако, что энергия должна возрастать приблизительно экспоненциально, как в потенциале Морса. Правильному поведению при Rмежмолекулярные взаимодействия. Рис. 15 и R → 0 удовлетворяет п о т е н ц и а л Б у к и н г е м а:

межмолекулярные взаимодействия. Рис. 16

содержащий эмпирич. параметры а, b и l.

Приведенные модельные потенциалы не учитывают взаимной ориентации взаимод. частиц. Для расчета взаимод. многоатомных молекул произвольной формы Т. Хиллом, а затем А.И.Китайгородским был разработан метод атом-атомных потенциалов. Согласно этому методу, межмол. потенциал V записывается в виде суммы потенциалов Vab парных взаимод. каждого атома а одной молекулы с каждым атомом b другой, причем Vab выражается к.-л. простой аналит. функцией, напр. потенциалом Букингема (7). Для каждой пары валентно не связанных атомов из эксперимента определяют эффективные значения входящих в Vab параметров, которые предполагаются универсальными, не зависящими от того, в какие молекулы входит данная пара атомов. Метод применим к мол. кристаллам, полимерам, сложным мол. комплексам. С его помощью рассчитывают конформации мол. изомеров, взаимные расположения молекул в элементарной ячейке, теплоты сублимации кристаллов и др. Приближенность метода заключается, в частности, в том, что многочастичные взаимод. учитываются только косвенно, выбором эффективных значений параметров в атом-атомном потенциале.

Существует ряд методов, позволяющих в простых случаях определять межмол. потенциалы непосредственно из экспе-рим. данных, не прибегая к модельным потенциалам, напр. по вращательно-колебат. спектрам мол. комплексов, по рассеянию молекул при столкновениях или по данным о вязкости газов.

М.в. изучают разл. физ. методами, основные из которых-молекулярных пучков метод, дифракционные методы, в частности газовая электронография, масс-спектрометрия по-выш. давления, ЯМР, микроволновая спектроскопия, ЯКР, колебат. спектроскопия (инфракрасная и комбинац. рассеяния), вакуумная УФ спектроскопия; изучение температурных зависимостей вириальных коэф., коэф. вязкости, диффузии, теплопроводности и др. Важную роль в исследовании М. в. играют расчетные методы квантовой химии.

Лит.: Гиршфельдер Дж., Кертисс Ч., Бэрд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Межмолекулярные взаимодействия; от двухатомных молекул до биополимеров, пер. с англ., М., 1981; Каплан И. Г., Введение в теорию межмолекулярных взаимодействий, М., 1982; Molecular interactions, ed. by H. Ratajczak, W.J. Orville-Thomas, v. 1–3, Chichester, 1980–82.

Н. Д. Соколов

Источник: Химическая энциклопедия на Gufo.me