Модальная логика

Мода́льная логика

Область логики, посвящённая изучению модальностей (См. Модальность), построению исчислений (См. Исчисление), в которых модальности применяются к высказываниям, наряду с логическими операциями (См. Логические операции), и сравнительному исследованию таких исчислений. «Модальные операторы» («возможно», «необходимо» и др.) могут относиться как к высказываниям (См. Высказывание) или Предикатам, так и к словам, выражающим какие-либо действия или поступки. Интерес к проблемам М. л. обусловлен прежде всего естественной связью, с одной стороны, между модальностями типа «необходимо» и понятием «логического закона» (т. е. тождественно истинного высказывания какой-либо логической системы), а с другой — между модальностями типа «возможно» и такими гносеологическими и общенаучными понятиями, как «(эффективно) осуществимо», «вычислимо» и т. п.

В классических системах М. л. (для которых справедлив Исключённого третьего принцип A V ⌉ A или закон снятия двойного отрицания ⌉ ⌉ АА для модальностей имеют место соотношения двойственности, аналогичные «законам де Моргана» ⌉ (А V В) ≡ (⌉ А & ⌉ В) и ⌉ (А & В) ≡ (⌉ А V ⌉ В) алгебры логики и соответствующим эквивалентностям для Кванторов, связывающие операторы возможности <# ♢ #> и необходимости ☐ с Отрицанием ⌉:

A ≡ ⌉ <# ♢ #> ⌉ A и <# ♢ #>А ≡ ⌉ ☐ ⌉ A.

Поэтому в аксиоматических системах М. л. в качестве исходной вводят обычно одну модальную операцию (используя какую-либо из этих эквивалентностей в качестве определения другой операции). Аналогично вводятся и другие модальные операции (не входящие в число логических операций и не выразимые через них).

Системы М. л. могут быть интерпретированы в терминах многозначной логики (См. Многозначная логика) (простейшие системы — как трёхзначные: «истина», «ложь», «возможно»). Это обстоятельство, а также возможность применения М. л. к построению теории «правдоподобных» выводов указывают на её глубокое родство с вероятностной логикой (См. Вероятностная логика).

Кроме рассматривавшихся выше «абсолютных» модальностей, в М. л. приходится иметь дело с т. н. относительными, т. е. связанными с какими-либо условиями («А возможно, если В», и т. п.); формализация правил обращения с ними не вызывает дополнительных трудностей и проводится с помощью аппарата ограниченных кванторов (с использованием предикатов, выражающих ограничительные условия, и логические операции материальной импликации).

Ю. А. Гастев.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. Модальная Логика — Область логики, в к-рой наряду с обычными высказываниями рассматриваются модальные высказывания, т. е. высказывания типа "необходимо, что.,.", "возможно, что..." и т. п. В математич. логике рассматриваются различные формальные системы М. Математическая энциклопедия
  2. модальная логика — МОДАЛЬНАЯ ЛОГИКА — раздел логики, посвященный изучению свойств модальных логических операторов типа «необходимо» и «возможно». К модальным операторам сейчас относят большинство операторов... Энциклопедия эпистемологии и философии науки
  3. МОДАЛЬНАЯ ЛОГИКА — МОДАЛЬНАЯ ЛОГИКА – область логики, в которой изучаются логические операторы, называемые модальностями. В качестве стандартных обычно используются (алетические) модальности: «необходимость» и «возможность». Новая философская энциклопедия
  4. МОДАЛЬНАЯ ЛОГИКА — МОДАЛЬНАЯ ЛОГИКА — логическая теория модальностей (модальных операторов) — применяемых к высказываниям или предикатам; играет важную роль в логической семантике. Большой энциклопедический словарь