Логарифм

Л. данного числа n называется показатель степени, в которую нужно возвести некоторое другое данное число а, называемое основанием, чтобы получить n; так что зависимость между данным числом n, основанием а и Л. х числа n выражается формулою n = aх. Л. числа обозначается символом log, или lg, или L. Л. числа n, взятый при основании а, обозначается иногда так: lgan, причем всегда должно удовлетворяться равенство n = algan. Например, из равенства 1000=103 следует 3=lg101000. Из равенства n=аlgan вытекают свойства логарифмов, обусловливающие полезность этой функции, а именно: 1) Л. произведения равен сумме Л. производителей; 2) Л. частного равен разности Л. делимого и делителя; 3) Л. степени равен произведению показателя степени на число, возводимое в степень; 4) Л. корня равен Л. подкоренной величины, разделенному на показатель корня. Эти свойства выражаются формулами:

lg(uv) = lgu + lgv;

lg(u/v) = lgu — lgv;

lg(um) = mlgu;

lgm√u = lgu/m.

Обладая такими свойствами, Л. дают возможность свести: умножение на сложение, деление на вычитание, возведение в степень на умножение и извлечение корня на деление, что и выясняет огромное практическое значение Л. для всех, кто имеет дело со сложными арифметическими вычислениями. При нашей десятичной системе исчисления самым удобным основанием оказывается число 10; имеется и множество таблиц, в которых даются Л. последовательных чисел начиная от 1 до 100000. При основании, равном 10, только Л. целых степеней десяти суть целые числа, Л. же простых чисел представляются десятичными дробями, например lg30=1,4771213. Целая часть такой дроби наз. характеристикою, а дробная — мантиссою. Характеристика определяется прямо по числу цифр целой части числа, именно, она равна числу таких цифр без единицы. Например, для числа 354,25, имеющего три цифры в целой части, характеристика будет 2. Благодаря такому легкому способу определения характеристики в таблицах дается лишь одна мантисса. Для большего упрощения вычислений самое вычитание Л. заменяется обыкновенно сложением, для чего вводят вместо вычитаемого Л. дополнение этого Л. Дополнением называется разность между Л. и числом 10. Если характеристика данного Л. более 10, то характеристика дополнения будет отрицательная, что и обозначается знаком -, который ставится над нею; например, дополнение от 12,3542351 будет Логарифм. Вычесть из одного Л. другой Л. все равно, что придать к первому Л. дополнение второго и из результата вычесть 10. Для уяснения пользы, приносимой Л. при вычислениях, возьмем два примера. 1) Определим конечный результат арифметических действий, выражаемых формулой x=(53126·32135)/(25677·62353). Производя эти действия обыкновенными приемами, мы должны были бы исписать довольно много бумаги; с помощью Л. задача решается тем, что подыскиваются в таблице Л. чисел, стоящих в числителе, и Л. чисел, стоящих в знаменателе, из последних в уме определяются их дополнения, и все это складывается следующим образом:

Логарифм. Рис. 1

Ближайший к нему Л. в таблицах имеет мантиссу 0278794, и ему соотвтствует в таблице число 10663; соответствующее число должно иметь одну цифру в целой части; если возьмет 1,0668, то это число выразит собою искомое число с точностью 0,0001. 2) Найдем Логарифм. Рис. 2. Обыкновенная алгебра даже не дает никаких других приемов для вычисления такого радикала кроме логарифмирования, посредством которого задача решается тем, что отыскивается в таблице lg3=0,4771213; делением этого Л. на 5 получается 0,0954242, ближайший к этому логарифм в таблицах находим: 0,0954135, которому соответствует в таблице число 1,2457; это и будет Логарифм. Рис. 2с точностью 0,0001. Логарифмы были изобретены шотландским геометром Непером (Napier), который в 1614 году напечатал "Mirifici logarithmorum canonis descriptio", посвященное им принцу Валлийскому (впоследствии король Карл I). Это сочинение in 4° представляет 56 страниц текста и 90 страниц таблиц; оканчивается оно словами: "собирая плоды этого небольшого произведения, воздайте должную славу и благодарность Богу высшему создателю и расточителю всех благ". Непер принял за основание своих таблиц особое несоизмеримое число, имеющее чрезвычайно важное значение в анализе и обозначаемое обыкновенно через е. Такой выбор основания поясняется следующими соображениями. Пусть α есть весьма малая величина, а — основание какой-либо системы; тогда члены арифметической прогрессии: 0, α, 2α, 3α... представят собою Л. членов геометрической прогрессии: 1, аα, а, а..., в которой знаменатель отношения аα, благодаря малости а, весьма мало отличается от 1. Назовем через β ту малую величину, на которую аα отличается от 1, так что aα=1+β; положим α/β=M. Тогда арифметическая прогрессия примет вид: 0, Mβ, 2Mβ, 3Mβ..., геометрическая же обратится в (1+β)0, (1+β)1, (1+β)2... Количество β совершенно произвольно: известно только, что оно очень мало; множитель же M зависит от того, какое мы избрали основание. Самое простое положить M=1. Основание, при котором М=1, и выбрано было Непером для его таблиц. Определим его величину: при М=1 упомянутая арифметическая прогрессия обращается в: 0, β, 2β, 3β..., геометрическая есть (1+β)0, (1+β)1, (1+β)2...; основание есть то число, которого Л. равен единице; положим, что (m+1)ый член арифметической прогрессии равен 1, то есть что mβ=1, тогда соответствующий член (1+β)m геометрической прогрессии и будет основанием, при котором М=1. Подставим в этот член вместо β его величину из mβ=1, получим [1+(1/m)]m. Эта величина и будет основанием неперовых Л., так что, разлагая до бинома Ньютона, получим

e = (1+m/1)m = 1 + m(1/m) + [m(m-1)/1.2]1/m2 +... или

e = (1+1/m)m = 1 + 1 + (1-1/m)/1.2 + [(1-m/1)(1-2/m)]/1.2.3 +... ;

так как β весьма мало, то m весьма велико, и дроби, содержащие m в знаменателе, по малой их величине можно отбросить; таким образом получим:

e = 1+1+(1/1.2)+(1/1.2.3)+(1/1.2.3.4)+...=2,71828....

Неперовы Л. называются иногда гиперболическими или натуральными; натуральными потому, что проще всего было предположить М=1; гиперболическими потому, что если в равносторонней гиперболе, отнесенной к асимптотам, принять абсциссу вершины за единицу, то площадь, заключенная между гиперболою, осью абсцисс, ординатою вершины и ординатою, соответствующею абсциссе x, равна lgx в неперовой системе. Величина е имеет особенно важное значение в анализе благодаря существованию ряда:

ex = 1+x+(x2/1.2)+(x3/1.2.3)+(x4/1.2.3.4)+...;

благодаря способности разлагаться в такой ряд показательная функция eх служит переходом от алгебраических функций к тригонометрическим, потому что из сравнения этого ряда с разложениями cosx и sinx следуют формулы:

Логарифм. Рис. 3

; Логарифм. Рис. 4.

Зная Л. числа m при данном основании а, можно определить Л. х числа m и при всяком другом основании b, потому что из равенства m=е следует lgm=xlgab, откуда: х=lgbm=(lgam)/(lgab); из этой формулы видно, что, имея Л. числа m при основании а, следует только помножить его на 1/(lgab), чтобы получить Л. числа m при основании b. Множитель, служащий для перехода от одной системы к другой, называется модулем. Модуль, на который следует множить неперовы Л. для получения Л. при основании 10, равен 0,4349448. Л. удовлетворяют, между прочим, следующим замечательным рядам: lg(1+x)=(x — x2/2 + x3/3 + x4/4 +... )M, где M есть модуль для перехода от неперовых Л.; lg(n+1)-lgn = 2M[1/(2n+1) + 1/3(2n+1)3 + 1/5(2n+1)5 +... ]. Посредством последнего, весьма быстро сходящегося ряда обыкновенно и вычисляются Л. следующим образом: зная, что lg100=2, подставим в наш ряд 100 вместо n; получим lg101 — 2 = M(1/201 + 1/3.2013 + 1/5.2015 +... ); последующие члены ряда, стоящего в скобках, уже настолько малы, что ими можно пренебречь и простым вычислением получить lg101=2,0043214; зная lg101, получим lg102 и так далее. Понятие о Л. обобщается распространением логарифмирования и на мнимые функции; при этом получаются формулы: lg(a+bi) = lg[r(cosφ+isinφ)] = lgr + (2nπ+φ)i, где i=√(-1), r=√(a2+b2), cosφ=a/[√(a2+b2)], sinφ=b/[√(a2+b2)]

Кроме Л. чисел, в таблицах обыкновенно помещаются Л. тригонометрических величин (см. Тригонометрические таблицы). Первые таблицы, в которых за основание было принято число 10, были напечатаны другом Непера Бриггом в 1624 г. под заглавием "Arithmetica logarithmica". В таблице Бригга были даны Л. чисел, начиная с 1 до 20000 и от 90000 до 100000, с 14 знаками в мантиссе. Голландский математик Влакк (Adrien Vlacq) пополнил пробел бригговских таблиц и напечатал в 1628 г. таблицы, содержащие Л. всех чисел от 1 до 100000, с десятью знаками в мантиссе. Из последующих изданий наиболее известны таблицы Гардинера, Баббаджа и Тейлора. В настоящее время употребляются чаще всего при вычислениях таблицы Каллета (до 106000), карманные таблицы Лаланда с пятью знаками и таблицы Бремикера семизначные, представляющие обработку таблиц Веги "Thesaurus logarithmorum completus" (1794). Существуют и весьма распространены у нас русские табл. Бремикера, напечатанные стереотипно.

Гауссовы Л. Для определения Л. суммы и разности двух чисел по Л. этих чисел Гаусс изобрел особые таблицы. Лучшие издания Гауссовых Л. представляют издания Витштейна, Матиссена и Цеха.

Н. Делоне.

Источник: Энциклопедический словарь Брокгауза и Ефрона на Gufo.me


Значения в других словарях

  1. логарифм — -а, м. мат. Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число. Таблица логарифмов. [От греч. λόγος — отношение и ’αρηθμός — число] Малый академический словарь
  2. Логарифм — Числа Nпо основанию а — показатель степени т, в к-рую следует возвести число "(основание Л.), чтобы получить N;обозначается logaN, т. е. m=logaN, если am=N. Каждому положительному числу соответствует при данном основании единственный действительный Л. (Л. Математическая энциклопедия
  3. логарифм — Логари́фм/. Морфемно-орфографический словарь
  4. Логарифм — Числа N по основанию а, показатель степени m, в которую следует возвести число а (основание Л.), чтобы получить N; обозначается logaN. Итак, m = logaN, если ам = N. Например, log10 100 = 2; log2 1/32 = — 5; loga 1 = 0, т. к. 100 = 102, 1/32 = 2-5, 1 = a0. Большая советская энциклопедия
  5. логарифм — орф. логарифм, -а Орфографический словарь Лопатина
  6. логарифм — Греческое – logos (соотношение, соответствие), arithmos (число). Первоисточником является греческий язык. В 1614 г. шотландский математик Непер создал термин logaritmus. В XVIII... Этимологический словарь Семёнова
  7. логарифм — ЛОГАРИФМ а, м. ЛОГАРИТМ а, м. logarithme m. , нем. Logarithm, н.-лат. Logarithmus <�гр. logos отношение + arrithmos число. мат. Показатель степени, в которую нужно возвести какое-н. определенное число, чтобы получить данное число. Словарь галлицизмов русского языка
  8. логарифм — Заимств. в XVIII в. из франц. яз., где logarithme < англ. logarithmus, неологизма шотландского математика Д. Непера. Слово образовано сложением греч. logos в значении «отношение» и arithmos «число». Этимологический словарь Шанского
  9. ЛОГАРИФМ — ЛОГАРИФМ, вспомогательный прием (формула) для произведения вычислений, выведенный в 1614 г. Джоном НЕПЕРОМ и разработанный впоследствии английским математиком Генри Бриггсом (1561-1631). Научно-технический словарь
  10. логарифм — ЛОГАРИФМ -а; м. [от греч. logos — отношение и arithmos — число] Матем. Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число. Таблица логарифмов. Л. числа 25. ◁ Логарифмический, -ая, -ое. Матем. Толковый словарь Кузнецова
  11. логарифм — ЛОГАРИФМ, а, м. В математике: показатель степени, в к-рую надо возвести число, называемое основанием, чтобы получить данное число. Таблица логарифмов. | прил. логарифмический, ая, ое. Логарифмическая линейка (счётный инструмент). Толковый словарь Ожегова
  12. логарифм — Логарифма, м. [от греч. logos – слово и arithmos – число] (мат.). Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число. Большой словарь иностранных слов
  13. логарифм — ЛОГАР’ИФМ, логарифма, ·муж. (от ·греч. logos — слово и arithmos — число) (мат.). Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число. Толковый словарь Ушакова
  14. логарифм — Этот математический термин был заимствован из французского, где logarithme восходит к научной латыни: слово logarithmus было образовано искусственно из греческого legos ("отношение") и arithmos – "число". Этимологический словарь Крылова
  15. логарифм — логарифм м. Показатель степени, в которую нужно возвести число, называемое основанием, чтобы получить данное число (в математике). Толковый словарь Ефремовой
  16. логарифм — логари́фм начиная с Петра I; см. Смирнов 180. Вероятно, из франц. logarithme "логарифм" от лат. logarithmus (слово создано шотландским математиком Джоном Нэпиром в 1614 г.; см. Шульц–Баслер 2, 38) из греч. λόγος и ἀριθμός, первонач. "относительное число". Этимологический словарь Макса Фасмера
  17. логарифм — ЛОГАРИФМ м. математ. Если под рядом чисел геометрической прогрессии (лествицы) выставить ряд отвечающих им чисел арифметической прогрессии, то каждое из последних будет логарифмом дружки своей, в первом порядке... Толковый словарь Даля