Физический энциклопедический словарь

ПОЛУПРОВОДНИКИ

Широкий класс в-в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106—104 Ом-1 см-1 и хороших диэлектриков s=10-10—10-12 Ом-1см-1 (электропроводность указана при комнатной темп-ре). Характерной особенностью П., отличающей их от металлов, явл. возрастание электропроводности с ростом темп-ры, причём, как правило, в широком интервале темп-р возрастание это происходит экспоненционально:

s=s0ехр(-?A/kT). (1)

Здесь ?A — т. н. энергия активации проводимости, s0 — коэфф. (в действительности зависящий от темп-ры, но медленнее, чем экспоненциальный множитель). Ф-ла (1) означает, что эл-ны в П. связаны с атомами, с энергией связи порядка ?A. С повышением темп-ры тепловое движение начинает разрывать связи эл-нов, и часть их, пропорц. ехр(-?А/kT), становится свободными носителями заряда.

Связь эл-нов может быть разорвана не только тепловым движением, но и разл. внеш. воздействиями: светом, потоком быстрых ч-ц, сильным электрич. полем и т. д. Поэтому для П. характерна высокая чувствительность электропроводности к внеш. воздействиям, а также к содержанию примесей и дефектов в кристаллах, поскольку во многих случаях энергия ?A для эл-нов, локализованных вблизи примесей или дефектов, существенно меньше, чем в идеальном кристалле данного П. Возможность в широких пределах управлять электропроводностью П. изменением темп-ры, введением примесей и т. д. явл. основой их многочисл. и разнообразных применений.

Полупроводники и диэлектрики. Классификация полупроводников.

Формула (1) относится в равной мере и к диэлектрикам, электропроводность к-рых может также стать заметной при высокой темп-ре. Различие между П. и диэлектриками явл. скорее количественным, чем качественным. Точнее было бы говорить о полупроводниковом состоянии неметаллич. в-в, не выделяя П. в особый класс, а к диэлектрикам относить лишь такие в-ва, у к-рых в силу больших значений ?A и малых s0 электропроводность могла бы достигнуть заметных значений лишь при темп-pax, превышающих темп-ру их испарения.

Однако термин «П.» обычно понимают в более узком смысле, как совокупность неск. наиболее типичных групп в-в, полупроводниковые свойства к-рых чётко выражены уже при комнатной темп-ре (300 К).

Примеры таких групп:

1) элементы IV группы периодич. системы элементов Ge и Si, которые наиболее полно изучены и с к-рыми связаны многие успехи полупроводниковой электроники. Атомы этих элементов, обладая 4 валентными эл-нами, образуют крист. решётки типа алмаза с ковалентной связью атомов. Сам алмаз также обладает свойствами П.; однако величина ?A для него значительно больше, чем у Ge и Si, и поэтому при T=300 К его собственная (не связанная с примесями или внеш. воздействиями) проводимость мала.

2) А л м а з о п о д о б н ы е п о л у п р о в о д н и к и. К ним относятся соединения элементов III группы периодич. системы (Al, Ga, In) с элементами V группы (Р, As, Sb), наз. П. типа AIIIBV (GaAs, InSb, GaP, InP и т. п.). Атомы III группы имеют 3 валентных эл-на, а V группы — 5, так что ср. число валентных эл-нов на 1 атом в этих соединениях также 4. Каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего образуется крист. решётка, подобная решётке алмаза с той лишь разницей, что ближайшими соседями атома АIII явл. атомы BV, а атома BV— А . За счёт частичного перераспределения эл-нов атомы АIII — BV в такой структуре оказываются разноимённо заряженными. Поэтому связи в кристаллах А111—BV не полностью ковалентные, а частично ионные (см. ИОННАЯ СВЯЗЬ). Однако ковалентная связь в них преобладает и определяет структуру, в результате чего эти кристаллы по многим свойствам являются ближайшими аналогами Ge и Si. Соединения элементов II и VI групп периодической системы — A11—BVI (ZnTe, ZnSe, CdTe, CdS и т. п.) также имеют (в среднем) 4 валентных эл-на на атом, но ионная связь у них более сильно выражена. Свойства П. у них не столь ярко выражены, как в предыдущих группах. Представление о «средней четырёхвалентности» и алмазоподобных П. оказалось плодотворным для поиска новых П., напр. типа A11—BVICV2 (ZnSnP2, CdGeAs3 и т. п.). Многие из алмазоподобных П. образуют сплавы, к-рые также явл. П., напр. Ge — Si, GaAs — GaP и др.

3) Элементы VI и V групп и их аналоги. Элементы VI группы Те и Se как П. были известны раньше, чем Ge и Si, причём Se широко использовался в выпрямителях электрич. тока и фотоэлементах. Элементы V группы As, Sb и Bi — полуметаллы, по свойствам близкие к П., а их ближайшие аналоги — соединения типа AIVBVI (PbS, PbSe, SeTe, GeTe и т. п.), имеющие в среднем по 5 валентных эл-нов на атом, образуют одну из важных групп П., известных как приёмники ИК-излучения. Среди соединений элементов VI группы (О, S, Se,Te) с элементами I—V групп очень много П. Большинство из них мало изучено. Примером более изученных и практически используемых могут служить Cu2O (купроксные выпрямители) и Bi2Te3 (термоэлементы).

4) Соединения элементов VI группы с переходными металлами (Ti, V, Mn, Fe, Ni, Sm, Eu и т. п.). В этих П. преобладает ионная связь. Большинство из них обладает той или иной формой магн. упорядочения (см. МАГНИТНЫЕ ПОЛУПРОВОДНИКИ). В нек-рых из них (V2O3, Fe3O4, NiS, Eu2O и др.) при изменении темп-ры и давления наблюдается фазовый переход полупроводник — металл.

Многие органич. соединения также обладают свойствами П. (см. ОРГАНИЧЕСКИЕ ПОЛУПРОВОДНИКИ).

Электроны и дырки в полупроводниках.

Т. к, в тв. теле атомы или ионы сближены на расстояние порядка ат. радиуса, то в нём происходит непрерывный переход валентных эл-нов от одного атома к другому. Такой электронный обмен может привести к образованию ковалентной связи, если электронные оболочки атомов сильно перекрываются и переходы эл-нов между атомами происходят быстро. Эта картина полностью применима к Ge и Si. Все атомы Ge нейтральны и связаны друг с другом ковалентной связью. Однако электронный обмен между атомами не приводит непосредственно к электропроводности, т. к. в целом распределение электронной плотности жёстко фиксировано: по 2 эл-на на связь между каждой парой атомов — ближайших соседей. Чтобы создать проводимость, необходимо разорвать хотя бы одну из связей, удалив с неё эл-н, перенести его в к.-л. др. ячейку кристалла, где все связи заполнены, и этот эл-н будет лишним. Такой эл-н в дальнейшем свободно может переходить из ячейки в ячейку (все они для него эквивалентны) и, являясь всюду лишним, переносит с собой избыточный отрицат. заряд, т. е. становится э л е к т р о н о м п р о в о д и м о с т и. Разорванная же связь становится блуждающей по кристаллу д ы р к о й, поскольку в условиях сильного обмена эл-н соседней связи быстро занимает место ушедшего. Недостаток эл-на у одной из связей означает наличие у атома (или пары атомов) единичного положит. заряда, к-рый переносится вместе с дыркой. Эл-ны и дырки — свободные носители заряда в П. В случае разрыва ионной связи перекрытие электронных оболочек меньше и электронные переходы менее часты. В этом случае также образуются эл-н проводимости и дырка, однако разрыв ионной связи требует большей затраты энергии.

В идеальных кристаллах возбуждение одного из связанных эл-нов и превращение его в эл-н проводимости неизбежно вызывает появление дырки, так что концентрации обоих типов носителей равны между собой. Это не означает, что вклад их в электропроводность одинаков, т. к. подвижность носителей тока (эл-нов и дырок) может быть различной. В реальных кристаллах равенство концентраций эл-нов и дырок может нарушаться за счёт примесей и дефектов кристаллич. решётки. Электропроводность П. м. б. обусловлена как собственными электронами атомов данного вещества (с о б с т в е н н а я п р о в о д и м о с т ь), так и электронами примесных атомов (п р и м е с н а я п р о в о д и м о с т ь). Источниками носителей тока могут быть также разл. дефекты крист. структуры, напр. вакансии, междоузельные атомы, а также отклонения от стехиометрич. состава.

Примеси и дефекты

Делятся на д о н о р ы и а к ц е п т о р ы. Доноры отдают в объём П. избыточные эл-ны и создают т. о. электронную проводимость (га-типа). Акцепторы захватывают валентные эл-ны в-ва, в к-рое они внедрены (матрицы), в результате чего создаются дырки и возникает дырочная проводимость (р-типа). Типичные примеры доноров — примесные атомы элементов V группы (Р, As, Sb) в Ge и Si. Внедряясь в крист. решётку, такой атом замещает в одной из ячеек атом Ge. При этом 4 из 5 его валентных эл-нов образуют с соседними атомами Ge ковалентные связи, а 5-й эл-н оказывается для данной решётки «лишним». Не локализуясь ни на одной связи, он становится электроном проводимости. При этом примесный атом однократно положительно заряжен и притягивает эл-н, что может привести к образованию связанного (слабо) состояния эл-на с примесным ионом. Размеры области вблизи примеси, в к-рой локализован электрон, в десятки раз превышают размер элементарной ячейки кристалла, а энергия ионизации примеси мала (=0,01 эВ в Ge и 0,04 эВ в Si), поэтому уже при темп-ре 77 К большинство примесей ионизовано, т. е. в П. появляются эл-ны проводимости с концентрацией, определяемой концентрацией донорных примесей.

Аналогично атомы III группы (В, А1, Ga, In) — типичные акцепторы в Ge и Si. Захватывая один из валентных эл-нов Ge в дополнение к своим 3 валентным эл-нам, они образуют 4 ковалентные связи с ближайшими атомами Ge и превращаются в отрицательно заряженный ион. В месте захваченного эл-на остаётся дырка, к-рая может быть удержана в окрестности акцепторного иона кулоновским притяжением к нему, однако на большом расстоянии и с очень малой энергией связи. Поэтому при не очень низких темп-pax эти дырки явл. свободными носителями заряда.

Рассмотренные примеры относятся к примесям замещения в П. Примером примеси внедрения в Si и Ge явл. Li. Из-за малости иона Li+ он, не нарушая существенно структуры решётки, располагается между атомами Ge (в междоузлии). Свой внеш. валентный эл-н, движущийся на существенно большем расстоянии, он притягивает очень слабо и легко отдаёт, являясь т. о. типичным донором. Во многих П. типа AIVBVI источниками дырок являются вакансии атомов АIV, а вакансии BVI — источниками эл-нов проводимости. Т. о., введение определённых примесей (л е г и р о в а н и е П.) — эфф. метод получения П. с разл. требуемыми свойствами.

Сильно легированные полупроводники.

При больших концентрациях примесей (или дефектов) их вз-ствие ведёт к изменениям свойств П. Это можно наблюдать в сильно легированных П., содержащих примеси в столь больших концентрациях Nпр, что ср. расстояние между ними, примерно равное N1/3, становится меньше (или равным) ср. расстояния а, на к-ром находится от примеси захваченный ею эл-н (или дырка). В таких условиях носитель не может локализоваться на к.-л. центре, т. к. он всё время находится на сравнимом расстоянии от неск. одинаковых примесей. Более того, воздействие примесей на движение эл-нов вообще мало, т. к. большое число носителей со знаком заряда, противоположным заряду примесных ионов, экранируют электрич. поле этих ионов. В результате все носители, вводимые с этими примесями, оказываются свободными даже при самых низких темп-pax, и П. превращается в полуметалл с одним типом носителей.

Условие сильного легирования: N1/3пр•a=1 легко достигается для примесей, создающих уровни с малой энергией связи (м е л к и е у р о в н и). Напр., в Ge и Si, легированных примесями элементов III или V групп, это условие уже выполняется при Nпр=1018 — 1019 см-3. Эти примеси удаётся вводить в концентрациях вплоть до Nпр=1021 см-3 при плотности атомов осн. в-ва 5•1022 см-3. В П. типа AIVBVI практически всегда с большой концентрацией (=1017— 1018 см-3) присутствуют вакансии одного из компонентов, а энергия связи носителей с этими вакансиями мала.

Зонная структура.

Описание законов движения носителей заряда в П. даёт зонная теория тв. тела. В П. верхняя из заполненных разрешённых зон наз. валентной, а наиболее низкая из незаполненных — з о н о й п р о в о д и м о с т и. Энергетич. щель ?g между валентной зоной и зоной проводимости наз. з а п р е щ ё н н о й з о н о й. Тепловое движение «забрасывает» часть эл-нов из валентной зоны в зону проводимости; в валентной зоне при этом появляются д ы р к и (рис. 1).

Эл-ны и дырки обычно сосредоточены вблизи ?с — ниж. края (дна) зоны проводимости или ?v — верх. края (потолка) валентной зоны на энергетич. расстояниях от них =kT, что гораздо меньше ширины разрешённых зон. В узких областях =kT сложные зависимости энергии носителей от их квазиимпульса р : ?(р) (дисперсии закон) принимают более простой вид. Напр., для эл-нов вблизи ?с закон дисперсии имеет вид:

Здесь индекс i нумерует оси координат, рэ0 — квазиимпульс, соответствующий ?с. Коэфф. mi — эффективная масса эл-нов проводимости.

Рис. 1. Валентная зона (белые кружки — дырки) и зона проводимости (чёрные кружки — эл-ны проводимости); ?g — ширина запрещённой зоны; ?c — дно зоны проводимости; ?v — потолок валентной зоны.

Аналогично, для дырок вблизи ?v закон дисперсии имеет вид:

Эффективные массы эл-нов mэ и дырок mд не совпадают с массой свободного эл-на m0 и, как правило, анизотропны (т. е. различны для разных i). Их значения для разных П. варьируются от сотых долей m0 до сотен m0. Ширина запрещённой зоны П. также меняется в широких пределах. Так, при T®0К ?g=0,165 эВ в PbSe и 5,6 эВ в алмазе, а серое олово — пример бесщелевого полупроводника, у к-poro ?g=0 (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ).

Рис. 2. Зонная структура Ge; L, D и Г— 3 минимума зависимости ?(р) для эл-нов проводимости вдоль осей (100) (D), (111) (L) при р=0(Г) по оси ординат—энергия, по оси абсцисс—проекции квазиимпульса на оси (100) и (111).

Наиболее полно изучена зонная структура Ge, Si и соединений типа AIIIBV. У Ge две валентные зоны соприкасаются вблизи потолка (рис. 2), что означает существование двух типов дырок: «тяжёлых» с mд =0,3 m0 и «лёгких» с mд =0,04 m0. На 0,3 эВ ниже расположена третья валентная зона, в к-рую, как правило, дырки уже не попадают. Для зоны проводимости Ge характерно наличие трёх типов минимумов ?(р): D, Г и L. Наинизший из них L-минимум расположен в импульсном пространстве (р-пространстве) на границе Вриллюэна зоны в направлении (111). Расстояние его от ?v и есть ширина запрещённой зоны ?g=0,74. эВ (при Т ®0; с ростом Т ?g уменьшается). Эффективные массы вблизи L-минимума сильно анизотропны: mэ=1,6m0 вдоль направления (III) и 0,08 m0 для перпендикулярных направлений. Четырём эквивалентным направлениям (III) в кристалле Ge (диагонали куба) соответствуют 4 эквивалентных L-минимума. Минимумы Г и D, расположенные при р=0 и в направлении оси (100), по энергии выше L-минимума на 0,15 эВ и 0,2 эВ и поэтому количество эл-нов проводимости в них, как правило, гораздо меньше, чем в L-минимуме.

Зонные структуры др. алмазоподобных П. близки к структуре Ge. Так, в Si, GaP и алмазе наинизшим явл. D-минимум, а в InSb, InAs и GaAs — Г-минимум, для к-рого характерны изотропные и весьма малые эффективные массы (0,013 m0 в InSb и 0,07m0 в GaAs). Структуры валентных зон во всех алмазоподобных П. подобны, но отличаются от П. др. групп.

Некристаллические полупроводники.

Нек-рые П. (Ge, Si, AIIIBV)при плавлении становятся металлами (см. ЖИДКИЕ МЕТАЛЛЫ). Однако др. П. (Те, Si, AIVBVI и др.) остаются П. (см. ЖИДКИЕ ПОЛУПРОВОДНИКИ). Существуют также тв. аморфные П. Отсутствие строгой упорядоченности в расположении атомов создаёт локальные флуктуации плотности и межатомных расстояний, в результате чего энергии эл-на вблизи разных атомов одного и того же сорта не вполне одинаковы. Это затрудняет переход эл-на от атома к атому, т. к. такие переходы связаны теперь с изменением энергии. У эл-нов и дырок с энергиями вблизи краёв зон не хватает энергии для преодоления энергетич. барьера между соседними атомами и поэтому они могут стать локализованными. В результате возникают электронные уровни в диапазоне энергий, к-рый в кристалле соответствовал бы запрещённой зоне. Находящиеся на этих уровнях эл-ны локализованы вблизи соответствующих флуктуации, и к ним неприменимы такие понятия зонной теории, как квазиимпульс и др. Меняется и само понятие запрещённой зоны — теперь уже эта область энергии заполнена локализованными состояниями (п с е в д о з а п р е щ ё н н а я з о н а; (см. АМОРФНЫЕ ПОЛУПРОВОДНИКИ, НЕУПОРЯДОЧЕННЫЕ СИСТЕМЫ)).

Оптические свойства.

Зонная структура П. отражается в их оптич. свойствах. Самым характерным для П. процессом поглощения света явл. собственное поглощение, при к-ром эл-н валентной зоны с квазиимпульсом р, поглощая фотон, переходит в незаполненное состояние зоны проводимости с квазиимпульсом р'. При этом энергия фотона ћw (w — частота света) связана с энергиями эл-на в начальном ?н и конечном ?к состояниях соотношением: ћw=?к-?н и выполняется закон сохранения квазиимпульса: p'=p+ћq (q — волновой вектор фотона). Импульс фотона ћq для видимого света и более длинноволнового излучения пренебрежимо мал по сравнению с р' , поэтому р'»р.

Собств. поглощение света возможно при ћw??g. Миним. энергия квантов, поглощаемых П. (порог, или край собств. поглощения), может быть больше ?g, если дно зоны проводимости ?с и потолок валентной зоны ?v соответствуют различным р. Переход между ними не удовлетворяет требованию р'=р, в результате чего поглощение должно начинаться с более коротких длин волн. В случае Ge это переходы в Г-минимум. Однако переходы, для к-рых p'?p, также оказываются возможными, если эл-н, поглощая фотон, одновременно поглощает или испускает фонон. Оптич. переходы, в к-рых эл-н существенно изменяет свой квазиимпульс, наз. н е п р я м ы м и, в отличие от п р я м ы х переходов, удовлетворяющих условию р'»p. Необходимость испускания или поглощения фонона делает непрямые переходы значительно менее вероятными, чем прямые. Поэтому коэфф. поглощения света, обусловленный непрямыми переходами, порядка 103 см-1, тогда как в области прямых переходов он достигает 105 см-1.

Наличие в спектре поглощения П. широких и интенсивных полос в области относит. малых частот (ћw=?g=l—5 эВ) показывает, что большое число валентных эл-нов слабо связано. Слабая связь легко деформируется внеш. электрич. полем, что обусловливает высокую поляризуемость кристалла. И действительно, для многих П. (Ge, Si, AIIIBV, AIVBVI и др.) характерны большие значения диэлектрической проницаемости e (в Ge e=16, в GaAs e=11, в РbТе e=30).

Вследствие кулоновского взаимодействия эл-нов и дырок в П. возможно образование связанных состояний— экситонов, к-рые проявляются в спектрах поглощения в виде узких линий, сдвинутых от края поглощения в сторону более длинных волн.

Наряду с собств. поглощением возможно поглощение света свободными носителями, связанное с их переходами в пределах зоны. Такие внутризонные переходы происходят при участии фононов или при рассеянии эл-нов примесными атомами.

Коэфф. поглощения света в П. определяется произведением вероятности поглощения фотона каждым эл-ном на число эл-нов, способных поглощать кванты данной энергии. Поэтому частотная зависимость коэфф. поглощения даёт сведения о плотности электронных состояний в зонах g(?). Так, вблизи края собств. поглощения в случае прямых переходов коэфф. поглощения практически повторяет плотность состояний:

Прозрачностью П, можно управлять в небольших пределах с помощью внешних электрич. и магн. полей. В П. с заметной долей ионной связи в далёкой ИК области спектра (ћw=10-2 эВ) наблюдаются полосы поглощения, связанные с возбуждением фотонами оптич. фононов.

Равновесные и неравновесные носители. При отсутствии внеш. воздействий равновесные концентрации эл-нов и дырок в П. полностью определяются темп-рой, шириной запрещённой зоны, эфф. массами носителей, концентрациями и пространств. распределением примесей и дефектов, а также энергиями связи с ними эл-нов и дырок.

Вблизи Т=0 К все собств. эл-ны П. находятся в валентной зоне, целиком заполняя её, а примесные — локализованы вблизи примесей или дефектов, так что свободные носители заряда отсутствуют. Если в образце есть и доноры и акцепторы, то эл-ны с доноров могут перейти к акцепторам. Если концентрация доноров Nд больше концентрации акцепторов NA, то в образце окажется NA отрицательно заряженных акцепторов и столько же положительно заряженных доноров. Только Nд-NA доноров останутся нейтральными и способными с повышением темп-ры отдать свои эл-ны в зону проводимости. Такой образец явл. П. n-типа с концентрацией носителей .Nд-NA. Аналогично в случае NA>Nд П. имеет проводимость р-типа. Связывание донорных эл-нов акцепторами наз. к о м п е н с а ц и е й п р и м е с е й, а П., содержащие доноры и акцепторы в сравнимых концентрациях, наз. к о м п е н с и р о в а н н ы м и.

С повышением темп-ры тепловое движение «выбрасывает» в зону проводимости эл-ны с донорных атомов и из валентной зоны (в случае проводимости n-типа). Энергия ионизации донора меньше ширины запрещённой зоны ?g<-?д, поэтому при не слишком высоких темп-рах первый из этих процессов оказывается доминирующим. Концентрация эл-нов в зоне проводимости при этом во много раз больше концентрации дырок в валентной зоне. В таких условиях эл-ны наз. о с н о в н ы м и н о с и т е л я м и, а дырки — неосновными (в П. р-типа — наоборот). Рост концентрации примесных эл-нов с темп-рой продолжается до полной ионизации всех доноров, после чего их концентрация в широком интервале темп-р остаётся почти постоянной. Число эл-нов, забрасываемых из валентной зоны, продолжает экспоненциально нарастать и при нек-рой темп-ре становится сравнимым с числом примесных эл-нов, а потом и во много раз большим. Эта область собств. проводимости П., когда концентрации эл-нов n и дырок p практически равны: n=p=ni.

При освещении П., облучении быстрыми частицами, наложении сильного электрич. поля и т. д. в П. появляются дополнит. неравновесные носители, что приводит к повышению электропроводности (см. ФОТОПРОВОДИМОСТЬ). Наряду с генерацией неравновесных носителей существует обратный процесс — рекомбинация эл-нов и дырок — переход эл-на из зоны проводимости в валентную зону, в результате чего происходит исчезновение эл-на и дырки. Рекомбинация может сопровождаться излучением, что лежит в основе полупроводниковых источников света (полупроводниковый лазер, светоизлучающие диоды).

Возможен также переход эл-на из зоны проводимости или дырки из валентной зоны в состояния, локализованные вблизи примесей или дефектов («захват» носителей). При термодинамич. равновесии тепловая генерация носителей и ионизация доноров и акцепторов уравновешивают процессы рекомбинации и захвата. При появлении в П. неравновесных носителей число актов рекомбинации и захвата возрастает. Т. о., после прекращения внеш. воздействия рекомбинация происходит интенсивнее, чем генерация, и концентрация носителей приближается к равновесному значению. Ср. время жизни т неравновесных носителей в П. варьируется от 10-3 с до 10-10 с.

Кинетические свойства.

При наложении внеш. электрич. поля в П. возникает направленное движение (дрейф) носителей, обусловливающее протекание тока. Скорость дрейфа vдр пропорц. напряжённости Е электрич. поля: vдр=mЕ. Коэфф. m наз. подвижностью носителей тока. В разных П. m варьируется в широких пределах (от 105 до 10-3 см2/В•с и меньше при T=300 К). При m?1 см2/В•с электропроводность П. осуществляется посредством движения носителей в разрешённых зонах, изредка прерываемого столкновениями с решёткой; при этом длина свободного пробега носителей в сотни или тысячи раз превышает межатомные расстояния в кристалле. При меньших значениях m имеет место прыжковая проводимость.

Носители, дрейфующие в электрич. поле в присутствии перпендикулярного к нему внеш. магн. поля, отклоняются в поперечном направлении под действием Лоренца силы. Это приводит к возникновению Холла эффекта и др. галъваномагнитных явлений. В П. эти явления обладают рядом особенностей, обусловленных наличием неск. типов носителей заряда, зависимостью времени их свободного пробега от энергии и сложным энергетич. спектром. Изучение гальваномагн. явлений в П. даёт информацию о концентрациях носителей, структуре энергетич. зон и характере процессов рассеяния носителей. Это относится и к термомагн. явлениям, когда дрейф эл-нов обусловлен градиентом темп-ры.

При неоднородном распределении концентрации носителей в П. возникает в результате их диффузии поток носителей с плотностью jд=-Dgradn. Коэфф. диффузии D связан с подвижностью (г носителей соотношением Эйнштейна:

D=kTm/e. (7)

Путь, к-рый диффундирующие неравновесные носители успевают пройти за время жизни т, наз. диффузионной длиной; он равен: lD=?Dt.

Контактные явления.

Контакты П. с металлом или с др. П. обладают иногда выпрямляющими свойствами, т. е. значительно эффективнее пропускают ток в одном направлении, чем в обратном. Это связано с изменением концентрации или типа носителей тока в приконтактной области и с возникновением контактной разности потенциалов. Напряжение, приложенное к контакту, в зависимости от его знака увеличивает либо уменьшает число носителей в приконтактной области, так что сопротивление контакта в прямом и обратном направлениях оказывается существенно различным (см. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД, ГЕТЕРОПЕРЕХОД, ШОТКИ БАРЬЕР).

Горячие электроны, неустойчивости в полупроводниках.

В сильных электрич. полях (=100—1000 В/см) возможно изменение распределения носителей по энергиям. Это приводит к увеличению ср. энергии (к разогреву) носителей; изменяются и др. параметры — время свободного пробега, подвижность, коэфф. диффузии и т. п. (см. ГОРЯЧИЕ ЭЛЕКТРОНЫ). Разогрев носителей приводит к отклонениям от закона Ома, причём характер этих отклонений весьма различен для разных П. и даже для одного и того же П., в зависимости от темп-ры, примесей, наличия магн. поля и т. п.

Если в нек-рой области полей Е с ростом Е ток убывает, то равномерное распределение поля в образце оказывается неустойчивым и спонтанно возникают движущиеся в направлении тока области (домены), в к-рых поле значительно больше, а концентрация носителей меньше, чем в остальной части П. Прохождение доменов сопровождается периодич. колебаниями тока, так что П. оказывается генератором электрич. колебаний с частотой до 1011 Гц (см. ГАННА ЭФФЕКТ).

В П., обладающих пьезоэлектрич. свойствами (см. ПЬЕЗОПОЛУПРОВОДНИКИ), нелинейные эффекты возникают также из-за отклонения от равновесного распределения фононов. В этих в-вах поток носителей становится интенсивным излучателем упругих волн, когда дрейфовая скорость носителей превышает скорость звука (см. АКУСТОЗЛЕКТРОННОВ ВЗАИМОДЕЙСТВИЕ).

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ВАЖНЕЙШИХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Отклонения от закона Ома могут быть вызваны также изменением концентрации носителей под действием электрич. поля, напр. из-за уменьшения вероятности рекомбинации или захвата на примеси с ростом энергии. Самым распространённым механизмом изменения концентрации носителей в сильном поле явл. ударная ионизация, при к-рой носители, набравшие в поле энергию, большую ?g, сталкиваясь с эл-нами валентной зоны, «выбрасывают» их в зону проводимости, создавая тем самым новые электронно-дырочные пары.

В достаточно сильном поле рождённые в результате ударной ионизации неравновесные носители могут за время своей жизни создать новые пары, и тогда процесс нарастания концентрации носителей принимает лавинообразный характер, т. е. происходит пробой П. В отличие от пробоя диэлектриков, пробой П. не сопровождается разрушением кристалла, т. к. пробивные поля для П. относительно невелики (?105 В/см, в InSb»250 В/см). Специфичный для П. пробой, связанный с ударной ионизацией примесей, имеющих малую энергию ионизации, при низких темп-рах происходит в полях =1—10 В/см.

Электрич. поле может и непосредственно перебрасывать валентный эл-н в зону проводимости, т. е. генерировать электронно-дырочные пары. Этот эффект связан с «просачиванием» эл-на под действием внеш. поля через запрещённую зону (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Он наблюдается обычно лишь в весьма сильных полях, тем больших, чем больше ?g. Такие поля, однако, реализуются во многих приборах; в ряде случаев туннельный эффект определяет характеристики этих приборов (туннельный диод).

Исторические сведения.

Хотя П., как особый класс в-в, были известны ещё с кон. 19 в., только развитие квант. теории твёрдого тела позволило понять их особенности (Уилсон, США, 1931). Задолго до этого были обнаружены эффект выпрямления тока на контакте металл — П., фотопроводимость и построены первые приборы на их основе. О. В. Лосев (1923) доказал возможность использования контактов П.— металл для усиления и генерации колебаний (крист. детектор). Однако в последующие годы крист. детекторы были вытеснены электронными лампами и лишь в нач. 50-х гг. с открытием транзисторов (Дж. Бардин. У.Браттейн, У. Б. Шокли, США, 1949) началось широкое использование П. (гл. обр. Ge и Si) в радиоэлектронике (см. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ). Одновременно началось интенсивное изучение свойств П., чему способствовало совершенствование методов очистки кристаллов и их легирования.

Физический энциклопедический словарь

Значения в других словарях

  1. Полупроводники — Широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ ~ 106—104 ом-1 см-1) и хороших диэлектриков (См.  Большая советская энциклопедия
  2. полупроводники — ПОЛУПРОВОДНИКИ вещества, характеризующиеся увеличением электрич. проводимости с ростом температуры. Хотя часто П. определяют как вещества с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (σ !...  Химическая энциклопедия
  3. полупроводники — ПОЛУПРОВОДНИКИ, ов, ед. ник, а, м. (спец.). Вещества, электропроводность к-рых при комнатной температуре меньше, чем у металлов, и больше, чем у диэлектриков. | прил. полупроводниковый, ая, ое. П. радиоприёмник (на полупроводниках).  Толковый словарь Ожегова
  4. полупроводники — ПОЛУПРОВОДНИКИ -ов; мн. (ед. полупроводник, -а; м.). Физ. Вещества, которые по электропроводности занимают промежуточное место между проводниками и изоляторами. Свойства полупроводников. Производство полупроводников.  Толковый словарь Кузнецова
  5. ПОЛУПРОВОДНИКИ — ПОЛУПРОВОДНИКИ — вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 — 104 Ом-1 см-1) и диэлектриков (10-8 — 10-12 Ом-1 см-1).  Большой энциклопедический словарь