УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ

(ультрафиолетовые лучи, УФ излучение), не видимое глазом эл.-магн. излучение, занимающее спектр. область между видимым и рентгеновским излучением в пределах длин волн l от 400 до 10 нм. Область У. и. условно делится на ближнюю (400—200 нм) и далёкую, или вакуумную (200— 10 нм); последнее назв. обусловлено тем, что У. и. этого диапазона сильно поглощается воздухом и его исследование возможно только в вакууме.

Ближнее У. и. открыто в 1801 нем. учёным И. В. Риттером и англ. учёным У. Волластоном, вакуумное до 130 нм— нем. физиком В. Шуманом (1885— 1903), а до 25 нм — англ. физиком Т. Лайманом (1924). Промежуток между вакуумным У. и. и рентгеновским изучен к 1927.

Спектр У. и. может быть линейчатым (спектры изолированных атомов, ионов, лёгких молекул), непрерывным (спектры тормозного или рекомбинац. излучения) или состоять из полос (спектры тяжёлых молекул; (см. СПЕКТРЫ ОПТИЧЕСКИЕ)).

При взаимодействии У. и. с в-вом могут происходить ионизация его атомов и фотоэффект. Оптич. св-ва в-в в УФ области спектра значительно отличаются от их оптич. св-в в видимой области. Характерно уменьшение прозрачности в У. и. (увеличение коэфф. поглощения) большинства тел, прозрачных в видимой области. Напр., обычное стекло непрозрачно при 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий (имеет наиболее далёкую границу прозрачности — до l=105 нм) и нек-рые др. материалы. Из газообразных в-в наибольшую прозрачность имеют инертные газы, граница прозрачности к-рых определяется величиной их ионизационного потенциала (самую коротковолновую границу прозрачности имеет Не — l=50,4 нм). Воздух непрозрачен практически при l<185 нм из-за поглощения У. и. кислородом.

Коэфф. отражения всех материалов (в т. ч. металлов) уменьшается с уменьшением l. Напр., коэфф. отражения свеженапылённого Аl, одного из лучших материалов для отражающих покрытий в видимом диапазоне, резко уменьшается при l<90 нм и значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области длин волн <80 нм нек-рые материалы имеют коэфф. отражения 10—30% (золото, платина, радий, вольфрам и др.), однако при l<40 нм и их коэфф. отражения снижается до 1% и ниже.

Источники У. и. Излучение накалённых до темп-р =3000 К тв. тел содержит заметную долю У. и. непрерывного спектра, интенсивность к-рого растёт с увеличением темп-ры. Более мощный источник У. и.— любая высокотемпературная плазма. Для различных применений У. и. используются ртутные, ксеноновые и др. газоразрядные лампы, окна к-рых (либо целиком колбы) изготовляют из прозрачных для У. и. материалов (чаще из кварца). Интенсивное У. и. непрерывного спектра испускают эл-ны в ускорителе (см. СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ). Для УФ области существуют лазеры, наименьшую длину волны испускает лазер с умножением частоты (l=38 нм).

Естеств. источники У. и.— Солнце, звёзды, туманности и др. космич. объекты. Однако лишь длинноволновая часть их излучения (l>290 нм) достигает земной поверхности. Более коротковолновое излучение поглощается атмосферой на выс. 30—200 км, что играет большую роль в атм. процессах. У. и. звёзд и др. космич. тел, кроме того, в интервале l=91,2—20 нм практически полностью поглощается межзвёздным водородом.

Приёмники У. и. Для регистрации У. и. при l=230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны спец. маложелатиновые фотослои. Применяются фотоэлектрич. приёмники, использующие способность У. и. вызывать ионизацию и фотоэффект: фотодиоды, ионизац. камеры, счётчики фотонов, фотоумножители и т. д. Разработан также особый вид фотоумножителей — каналовые электронные фотоумножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка явл. каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрич. изображения в У. и. и объединяют преимущества фотографич. и фотоэлектрич. методов регистрации излучения. При исследовании У. и. также используют разл. люминесцирующие в-ва, преобразующие У. и. в видимое. На их основе созданы приборы для визуализации изображения в У. и.

Применение У. и. Изучение спектров испускания, поглощения и отражения в УФ области позволяет определять электронную структуру атомов, молекул, ионов, твёрдых тел. УФ спектры Солнца, звёзд, туманностей несут информацию о физ. процессах, происходящих в горячих областях этих космич. объектов. На фотоэффекте, вызываемом У. и., основана фотоэлектронная спектроскопия. У. и. может нарушать хим. связи в молекулах, в результате чего могут возникать разл. фотохим. реакции, что послужило основой для фотохимии. Люминесценция под действием У. и. используется для создания люминесцентных ламп, светящихся красок, в люминесцентном анализе, дефектоскопии. У. и. применяется в криминалистике и искусствоведении. Способность разл. в-в к избирательному поглощению У. и. используется для обнаружения вредных примесей в атмосфере и в УФ микроскопии.

Биологическое действие У. и. У. и. поглощается верх. слоями тканей растений, кожи человека или животных. При этом происходят хим. изменения молекул биополимеров. Малые дозы оказывают благотворное действие на организмы — способствуют образованию витаминов группы D, улучшают иммунобиол. свойства. Большие дозы могут вызывать повреждение глаз и ожог кожи.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Ультрафиолетовое излучение — (от Ультра... и фиолетовый) ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400—10 нм. Вся область У. Большая советская энциклопедия
  2. УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ, ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ с более короткой длиной волны и более высокой частотой по сравнению с видимым светом. Научно-технический словарь
  3. Ультрафиолетовое излучение — Электромагнитное излучение, занимающее спектральную область в пределах длин волн от 10 до 400 нм, — см. Электромагнитные излучения. Медицинская энциклопедия
  4. УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение в пределах длин волн ??400-10 нм. Различают ближнее ультрафиолетовое излучение (400-200 нм) и дальнее, или вакуумное (200-10 нм). С уменьшением ?... Большой энциклопедический словарь