СВЕРХТЕКУЧЕСТЬ

Состояние квантовой жидкости, при к-ром она протекает через узкие щели и капилляры без трения.

Сверхтекучесть 4Не. Жидкий гелий 4Не становится сверхтекучим ниже темп-ры Tl=2,17 К, при давлении насыщенных паров ps=38,8 мм рт. ст. Свехтекучий 4Не наз. Не II (см. ГЕЛИЙ ЖИДКИЙ), несверхтекучий жидкий 4Не наз. He I. С. Не II была открыта П. Л. Капицей в 1938. В 1972—74 было установлено, что С. обладает также жидкий 3Не при темп-ре ниже Tс=2,6•10-3 К и давлении 2,58•104 мм рт. ст. (34 атм). Переход жидких 4Не и 3Не в сверхтекучее состояние представляет собой фазовый переход II рода.

Сверхтекучую жидкость нельзя представлять как жидкость, не обладающую вязкостью, т. к. эксперименты с крутильными колебаниями диска, погружённого в Не II, показали, что вызываемое вязкостью затухание колебаний при темп-ре, не слишком далёкой от Тl («лямбда-точки»), мало отличается от затухания аналогичных колебаний в Не I.

Теория сверхтекучести Не II была создана Л. Д. Ландау в 1941. Эта теория, получившая название д в у х ж и д к о с т н о й г и д р о д и н а м и к и, основана на представлении о том, что при низких темп-рах св-ва Не II как слабовозбуждённой квант. системы обусловлены наличием в нём элементарных возбуждений (квазичастиц).

Не II можно представить состоящим из двух взаимопроникающих компонент: нормальной и сверхтекучей. Норм. компонента при темп-рах, не слишком близких к Тl, представляет собой совокупность квазичастиц двух типов — фононов и ротонов. При T=0 плотность норм. компоненты rn=0, поскольку при этом любая квант. система находится в осн. состоянии и возбуждения (квазичастицы) в ней отсутствуют. При темп-рах от абс. нуля до 1,7—1,8 К совокупность элем. возбуждений в Не II можно рассматривать как идеальный газ квазичастиц. С дальнейшим приближением к Тl из-за заметно усиливающегося вз-ствия квазичастиц модель идеального газа для них становится неприменимой. Вз-ствие квазичастиц между собой и со стенками сосуда обусловливает вязкость норм. компоненты. Остальная часть Не II — сверхтекучая компонента — вязкостью не обладает и поэтому свободно протекает через узкие щели и капилляры; её плотность rs=r-rn, где r — плотность жидкости. При Т=0 rs=r, с ростом темп-ры концентрация квазичастиц растёт, поэтому rs уменьшается и, наконец, обращается в нуль при Т=Тl (С. в l-точке исчезает, рис. 1). СВЕРХТЕКУЧЕСТЬ

Рис. 1. Диаграмма, иллюстрирующая двухжидкостную модель Не II (rn/r — отношение плотности норм. компоненты к плотности Не II).

Согласно теории Ландау, жидкость перестаёт быть сверхтекучей и в случае, когда скорость её потока превышает критич. значение, при к-ром начинается спонтанное образование ротонов. При этом сверхтекучая компонента теряет импульс, равный импульсу испускаемых ротонов, и, следовательно, тормозится. Однако эксперим. значение критич. скорости существенно меньше того, к-рое требуется по теории Ландау для разрушения С.

С микроскопич. точки зрения появление С. в жидкости, состоящей из атомов с целым спином (бозонов), напр. атомов 4Не, связано с переходом при Tсм. ПОТЕНЦИАЛЬНОЕ ТЕЧЕНИЕ) и, следовательно, не испытывает сопротивления со стороны обтекаемых ею предметов и стенок канала или сосуда.

Конденсатная ф-ция y должна быть непрерывной, поэтому её фаза j при обходе по замкнутому контуру может меняться лишь на 2pN, где N — целое число. Это означает, что циркуляция скорости сверхтекучей компоненты по любому замкнутому контуру может принимать только дискретные значения N•hlm. Поэтому сверхтекучая компонента — это не просто идеальная жидкость с потенц. течением, она обладает особыми макроскопич. квантовыми св-вами. Во-первых, при течении сверхтекучей компоненты по каналу, замкнутому в кольцо, циркуляция скорости vs вдоль канала квантуется с квантом циркуляции h/m. Под влиянием внеш. воздействия скорость течения не может уменьшаться непрерывно, а только скачком. В процессе скачкообразного перехода от течения с N квантами циркуляции к течению с N-1 квантами требуется разрушить сверхтекучее состояние (обратить rs в нуль) в нек-рой области и, следовательно, преодолеть большой потенц. барьер. Поэтому течение в замкнутом канале чрезвычайно устойчиво. Во-вторых, в сверхтекучей компоненте могут существовать т. н. квантованные вихри (Л. Онсагер, 1948; Р. Фейнман, 1955, США) с циркуляцией вокруг оси вихря, принимающей дискретные значения. В отличие от вихрей в обычной жидкости (см. ВИХРЕВОЕ ДВИЖЕНИЕ), эти вихри устойчивы и не исчезают под влиянием вязкости норм. компоненты. На оси этих вихрей y, а вместе с ней и rs обращаются в нуль. Квантованные вихри осуществляют вз-ствие между сверхтекучей и норм. компонентами сверхтекучей жидкости. Их рождение приводит хотя и к слабому, но конечному затуханию потока сверхтекучей жидкости в замкнутом канале. При нек-рой скорости движения сверхтекучей компоненты относительно норм. компоненты или стенок сосуда квантованные вихри образуются столь интенсивно, что сверхтекучая компонента начинает испытывать трение со стороны норм. компоненты или стенок сосуда. В рамках этой теории С. пропадает при скоростях, существенно меньших скоростей по теории Ландау и более близких к реальным значениям критич. скорости. Квантованные вихри наблюдаются экспериментально при вращении сосуда с Не II. При достаточно большой угл. скорости w вращения сосуда они образуют вихревую систему со ср. скоростью ,vs, совпадающей со скоростью твердотельного вращения (w, r). Кроме того, в экспериментах с ионами, инжектируемыми в Не II, обнаружены квантованные вихри, имеющие форму кольца.

Сверхтекучесть 3Не. Атомы 3Не обладают полуцелым спином, т. е. они— фермионы, а 3Не — ферми-жидкость. Если между фермионами имеются силы притяжения, приводящие к образованию попарно связанных фермионов, т. н. куперовских пар (см. КУПЕРА ЭФФЕКТ), то такие пары обладают целочисленным спином. По этому признаку они — бозоны и могут образовывать Бозе-конденсат. Силы вз-ствия между ч-цами в 3Не таковы, что лишь при темп-рах порядка неск. мК в 3Не создаются условия для образования куперовских пар и возникновения С. Открытию С. у 3Не способствовало освоение эфф. методов получения низких темп-р — Померанчука эффекта и магнитного охлаждения. С их помощью удалось выяснить характерные особенности диаграммы состояния 3Не при сверхнизких темп-рах (рис. 2).СВЕРХТЕКУЧЕСТЬ. Рис. 2

Рис. 2. Диаграмма состояния 3Не при низких темп-рах, р — давление, Н — магн. поле.

В отличие от 4Не ((см. ГЕЛИЙ ЖИДКИЙ) рис. 1 ), на диаграмме состояния 3Не обнаружены две сверхтекучие фазы (А и В). Переход норм. ферми-жидкости в любую из этих фаз представляет собой фазовый переход II рода. Переход из сверхтекучей фазы А в сверхтекучую фазу В относится к фазовым переходам I рода. В магн. поле линия перехода из несверхтекучей фазы в фазу А расщепляется на две линии, каждая из к-рых явл. линией перехода 2-го рода. В области между линиями возникает ещё одна фаза (A1). Во всех трёх фазах образовавшиеся куперовские пары обладают спином s=1 и орбитальным квант. числом L=1. Фазы различаются по структуре волновой ф-ции куперовской пары, к-рая определяет как сверхтекучие, так и магн. св-ва фазы. В фазе В у куперовских пар в среднем нет выделенных направлений спина и орбит. момента импульса. По сверхтекучим св-вам B-фаза эквив. Не II, а по магн. св-вам напоминает изотропный антиферромагнетик. В фазе А куперовская пара имеет ср. направление l орбит. момента импульса, к-рое в равновесии одинаково для всех пар в жидкости, поскольку эти пары образуют Бозе-конденсат. В случае, если l не меняется в пр-ве (напр., фиксируется границей сосуда или внеш. полями), сверхтекучие св-ва фазы А отличаются от св-в Не II лишь тем, что фаза А анизотропна с осью анизотропии вдоль l и коэфф., входящие в ур-ния двухжидкостной гидродинамики Ландау, в т. ч. плотности норм. и сверхтекучей компонент, явл. тензорами. В общем случае, когда l может меняться в пр-ве, осн. отличие фазы А от Не II заключается в том, что скорость сверхтекучей компоненты vs не явл. потенциальной. Циркуляция vs по замкнутому контуру зависит от изменения в пр-ве вектора l. Это приводит к тому, что торможение потока сверхтекучей компоненты может осуществляться не только за счёт образования квантованных вихрей, как в Не II, но и непрерывно, путём осцилляции вектора l в канале. На поверхности канала, где вектор l фиксирован, торможение осуществляется посредством движения точечных дефектов — буджумов. При вращении сосуда может возникать как система квантованных вихрей, так и периодич. структура с непрерывным распределением l и vs. По магн. св-вам фаза А напоминает одноосный антиферромагнетик. Кроме того, поскольку орбит. момент куперовских пар частично передаётся эл-нам атомов 3Не, фаза А обладает также слабым (10-11 магнетонов Бора на атом) спонтанным магн. моментом, направленным по l, и явл. пока единственным известным жидким ферромагнетиком.

Эффекты, сопутствующие сверхтекучести. В сверхтекучей жидкости, кроме обычного (первого) звука (колебаний плотности), может распространяться т. н. второй звук, представляющий собой звук в газе квазичастиц (колебания плотности квазичастиц, следовательно, и темп-ры). Возможны и иные виды колебаний: капиллярные волны, звук. колебания сверхтекучей части жидкости в узких капиллярах (т. н. четвёртый звук) и др. Сверхтекучая жидкость обладает аномально высокой теплопроводностью, причиной к-рой явл. конвекция — теплота переносится макроскопич движением газа квазичастиц. При нагревании Не II в одном из сообщающихся (через капилляр) сосудов между сосудами возникает разность давлений (термомеханический эффект). Этот эффект объясняется тем, что в сосуде с большей темп-рой повышена концентрация квазичастиц. Из-за того, что узкий капилляр не пропускает вязкого потока норм. компоненты, возникает избыточное давление газа квазичастиц, подобное осмотическому давлению в р-ре. Существует и обратный эффект (т. н. механокалорический эффект): при быстром вытекании Не II из сосуда через капилляр темп-ра внутри сосуда повышается (в нём увеличивается концентрация квазичастиц), а вытекающий гелий охлаждается. Интересными св-вами обладает сверхтекучая плёнка гелия, образующаяся на твёрдой стенке сосуда. Так, напр., она может выравнивать уровни Не II в сосудах, имеющих общую стенку.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Сверхтекучесть — Особое состояние квантовой жидкости (См. Квантовая жидкость), находясь в котором жидкость протекает через узкие щели и капилляры без трения; при этом протекающая часть жидкости обладает равной нулю энтропией (См. Энтропия). Большая советская энциклопедия
  2. сверхтекучесть — орф. сверхтекучесть, -и Орфографический словарь Лопатина
  3. СВЕРХТЕКУЧЕСТЬ — СВЕРХТЕКУЧЕСТЬ, свойство жидкости, которая не обладает вязкостью и потому не обладает сопротивлением к текучести. ГЕЛИЙ II (жидкий гелий при температурах ниже 2 К, или — 271 °С) был самой первой известной сверхтекучей жидкостью. Научно-технический словарь
  4. сверхтекучесть — СВЕРХТЕКУЧЕСТЬ -и; ж. Физ. Совокупность физических явлений, наблюдаемых в жидком гелии при температуре, близкой к абсолютному нулю. С. жидкого гелия. Явление сверхтекучести. Теория сверхтекучести. ◁ Сверхтекучий, -ая, -ое. С-ая жидкость. Толковый словарь Кузнецова
  5. СВЕРХТЕКУЧЕСТЬ — СВЕРХТЕКУЧЕСТЬ — свойство квантовой жидкости (4Не и 3Не) протекать без внутреннего трения (вязкости) через узкие щели, капилляры и т. п. Сверхтекучесть 4He (при температурах ниже Тк = 1,17 К) была открыта в 1938 П. Большой энциклопедический словарь
  6. сверхтекучесть — сверхтекучесть ж. Совокупность физических явлений, наблюдаемых в жидком гелии при температуре, близкой к абсолютному нулю. Толковый словарь Ефремовой