КОСМОЛОГИЯ

(от греч. kosmos — мир, Вселенная и logos — слово, учение), учение о Вселенной как едином целом и о всей охваченной астр. наблюдениями области Вселенной (Метагалактике) как части целого; раздел астрономии. Выводы К. основываются на законах физики и данных наблюдат. астрономии, а также философских принципах (в конечном счёте — на всей системе знаний) своей эпохи. Важнейшим философским постулатом К. явл. положение, согласно к-рому законы природы (законы физики), установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счёте — на всю Вселенную.

Космологические теории различаются в зависимости от того, какие физ. принципы и законы кладутся в основу К. Построенные на их основе модели должны допускать проверку для наблюдаемой области Вселенной, выводы теории должны подтверждаться наблюдениями (во всяком случае, не противоречить им), теория должна предсказывать новые явления. В 80-х гг. 20 в. этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности (в релятив. К.) однородные изотропные модели нестационарной горячей Вселенной.

Возникновение совр. К. связано с созданием релятив. теории тяготения (А. Эйнштейн, 1916) и зарождением внегалактич. астрономии (20-е гг.). На первом этапе развития релятив. К. главное внимание уделялось геометрии Вселенной (кривизна четырёхмерного пространства-времени и возможная замкнутость Вселенной). Начало второго этапа можно датировать работами сов. учёного А. А. Фридмана (1922— 1924), в к-рых он показал, что Вселенная, заполненная тяготеющим в-вом, не может быть стационарной — она должна расширяться или сжиматься; но эти принципиально новые результаты получили признание лишь после открытия красного смещения (эффекта «разбегания» галактик) амер. астрономом Э. Хабблом (1929). В результате на первый план выступили проблемы механики Вселенной и её «возраста» (длительности расширения). Третий этап начинается моделями «горячей» Вселенной (амер. физик Г. Гамов, 2-я пол. 40-х гг.), в к-рых осн. внимание переносится на физику Вселенной — состояние в-ва и физ. процессы, идущие на разных стадиях расширения Вселенной, включая наиб. ранние стадии, когда состояние было необычным. Наряду с законом тяготения в К. приобретают большое значение законы термодинамики, данные яд. физики и физики элем. ч-ц. Возникает релятив. астрофизика, к-рая заполняет былую брешь между К. и астрофизикой.

В основе теории однородной изотропной Вселенной лежат: ур-ния Эйнштейна общей теории относительности, из них следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии); представления об однородности и изотропности Вселенной (во Вселенной нет к.-л. выделенных точек и направлений, т. е. все точки и направления равноправны). Последнее утверждение часто называют космологич. постулатом. Если дополнительно предположить, что во Вселенной отсутствуют гипотетич. силы, возрастающие с расстоянием и противодействующие тяготению в-ва, а плотность массы создаётся гл. обр. в-вом, то космологич. ур-ния приобретают особенно простой вид и возможными оказываются только две модели. В одной из них кривизна трёхмерного пр-ва отрицательна или (в пределе) равна нулю, Вселенная бесконечна (открытая модель); в такой модели расстояния между скоплениями галактик со временем неограниченно возрастают. В др. модели кривизна пр-ва положительна, Вселенная конечна (но столь же безгранична, как и в открытой модели); в такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции Вселенной кривизна трёхмерного пр-ва уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т. е. открытая модель остаётся открытой, замкнутая — замкнутой. Нач. стадии эволюции по обеим моделям совершенно одинаковы: должно было существовать особое нач. состояние — сингулярность с огромной (не меньше чем с планковской 1093 г/см3) плотностью массы и кривизной пр-ва и взрывное, замедляющееся со временем расширение.

Характер эволюции схематически показан на рис. 1 (замкнутая модель) и рис. 2 (открытая модель). По оси абсцисс отложено время, причём момент взрывного начала принят за начало отсчёта времени (t=0).КОСМОЛОГИЯ

По оси ординат отложен нек-рый масштабный фактор R, в качестве к-рого может быть принято, напр., расстояние между теми или иными двумя далёкими объектами (галактиками). Зависимость R=R(t) изображается на рис. сплошной линией; прерывистая линия — изменение кривизны в ходе эволюции (кривизна пропорц. 1/R2). Заметим ещё, что относит. скорость изменения расстояний 1/R•dR/dt=H есть не что иное, как Хаббла постоянная (точнее, параметр Хаббла). В нач. момент (t®0) фактор R®0, а параметр Хаббла H®?. В наше время значение Н лежит в пределах 50—100 (км/с)/Мпк, что соответствует времени расширения от 10 до 20 млрд. лет. Из космологич. ур-ний следует, что при заданном Н равная нулю кривизна трёхмеряого пр-ва может иметь место только при строго определённой (критической) плотности массы rкp= Зс2H2/G, где G — гравитационная постоянная. Если r>rкр, то мир замкнут, при r<=1013 К) вблизи сингулярности не могли существовать не только молекулы или атомы, но даже и ат. ядра; существовала лишь равновесная смесь разных элем. ч-ц (включая фотоны и нейтрино). На основе физики элем. ч-ц можно рассчитать состав такой смеси при разных темп-pax Т, соответствующих последоват. этапам эволюции. Ур-ния К. позволяют найти закон расширения однородной и изотропной Вселенной и изменение её физических параметров в процессе расширения. Согласно этому закону, плотность числа ч-ц вещества уменьшается лропорц. R-3 (или t-2), плотность излучения =R-4 и т. д. Поскольку расширение вначале к тому же идёт с большой скоростью, очевидно, что высокие плотность и темп-ра могли существовать только очень короткое время. Действительно, уже при t»0,01 с плотность упадёт от бесконечного (формально) значения до =1010 г/см3. Во Вселенной в момент t=0,01 с должны были сосуществовать фотоны, эл-ны, позитроны, нейтрино и антинейтрино, а также небольшая примесь нуклонов (протонов и нейтронов). В результате последующих превращений к моменту t»3 мин из нуклонов образуется смесь лёгких ядер (2/3 водорода и 1/3 гелия по массе; все остальные хим. элементы синтезируются из этого дозвёздного в-ва, причём намного позднее, в результате яд. реакций в недрах звёзд; (см. НУКЛЕОСИНТЕЗ)). В момент образования нейтральных атомов гелия и водорода (рекомбинация нуклонов и электронов в атомы произошла при t=106 лет) вещество становится прозрачным для оставшихся фотонов, и они должны наблюдаться в настоящее время в виде реликтового излучения, свойства к-рого можно предсказать на основе теории «горячей» Вселенной. Хотя расширение вначале идёт очень быстро, процессы превращений элем. ч-ц в самом начале расширения протекают несравненно быстрее, в результате чего устанавливается последовательность состояний термодинамич. равновесия. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопич. параметрами (определяемыми скоростью расширения) и совершенно не зависит от предшествующей истории. Поэтому незнание того, что происходило при плотностях, намного превосходящих ядерную, не мешает делать б. или м. достоверные суждения о более поздних состояниях, описываемых законами совр. физики микромира. Общие законы физики надёжно проверены при яд. плотностях (=1014 г/см3), эту плотность имеет Вселенная спустя 10-4 с от начала расширения. Следовательно, физ. св-ва эволюционирующей Вселенной вполне поддаются изучению со времени 10-4 с от состояния сингулярности (в ряде случаев эту границу отодвигают непосредственно к сингулярности). Выводы релятив. К. имеют радикальный, революц. характер, и вопрос о степени их достоверности представляет большой общенауч. и мировоззренческий интерес. Наибольшее принципиальное значение имеют выводы о нестационарности (расширении) Вселенной, о высоких значениях плотности и темп-ры в начале расширения («горячая» Вселенная) и об искривлённости пространства-времени. Несколько более частный характер имеют проблемы знака кривизны трёхмерного пр-ва окружающего мира, а также степени однородности и изотропии Вселенной. Вывод о нестационарности надёжно подтверждён космологич. красным смещением; наблюдаемая область Вселенной с линейными размерами порядка неск. млрд. парсек расширяется, и это расширение длится по меньшей мере неск. млрд. лет (объекты, находящиеся на расстоянии 1 млрд. пк, мы видим такими, какими они были ок. 3 млрд. лет тому назад). Столь же основат. подтверждение нашла и концепция «горячей» Вселенной: в 1965 было открыто реликтовое излучение, к-рое оказалось в высокой мере, с точностью до долей процента, изотропным, а спектр его равновесным (планковским) с T»3K. Это доказывает, что Вселенная на протяжении более чем 0,99 времени своего существования изотропна. Это, естественно, повышает доверие к однородным изотропным моделям, к-рые до этого рассматривались как весьма грубое приближение к действительности.

Кривизна трёхмерного пр-ва пока не измерена. Её можно было бы определить, если бы была известна ср. плотность массы во Вселенной или можно было бы определить более точно зависимость красного смещения от расстояния (отклонение от линейной зависимости). Астрономич. наблюдения приводят к значениям усреднённой плотности в-ва, входящего в видимые галактики, ок. 3•10-31 г/см3. Определить плотность скрытого (невидимого) в-ва, а тем более плотность, создаваемую нейтрино (если масса нейтрино не равна нулю), гораздо труднее, и неопределённость суммарной плотности из-за этого весьма велика (она может быть, в частности, на два порядка больше усреднённой плотности звёздного в-ва). На основе имеющихся наблюдат. данных (103-31rкр, т. е. для замкнутых моделей, Т ещё меньше. С др. стороны, если существуют космологнч. силы, соответствующие отталкиванию, то оказывается возможной, напр., длительная (порядка 10 или более млрд. лет) задержка расширения в прошлом, и Т может составлять десятки млрд. лет.

Релятив. К. объясняет наблюдаемое совр. состояние Вселенной, она предсказала неизвестные ранее явления. Но развитие К. поставило и ряд новых, крайне трудных проблем, к-рые ещё не решены. Так, для изучения состояния в-ва с плотностями на много порядков выше яд. плотности нужна совершенно новая физ. теория (предположительно, некий синтез существующей теории тяготения и квант. теории). Подходы же к изучению сингулярности пока лишь намечаются.

По мере развития К. возник вопрос о единственности Вселенной. В рамках совр. К. довольно естественно считать Метагалактику единственной. Но вопросы топологии пространства-времени разработаны ещё недостаточно для того, чтобы составить представление о возможностях, к-рые могут быть реализованы в природе. Это надо иметь в виду, в частности, и в связи с проблемой возраста Вселенной.

Существует проблема зарядовой асимметрии во Вселенной; в нашем космич. окружении (во всяком случае, в пределах Солн. системы и Галактики, а вероятно, и в пределах всей Вселенной) имеет место подавляющее количеств. преобладание в-ва над антивеществом. Причины, приведшие к наблюдаемой асимметрии между веществом и антивеществом своими корнями уходят, по-видимому, в самые ранние стадии развития Вселенной.

К успешно решаемым проблемам К. относится образование скоплений галактик и отд. галактик. Они возникли после стадии рекомбинации благодаря росту имевшихся небольших неоднородностей в распределении в-ва и влиянию гравитац. неустойчивости. Ряд др. проблем К. (проблема сингулярности, выбора космологич. моделей и др.) пока ещё не решены.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. космология — -и, ж. Учение об общих закономерностях строения всей охватываемой астрономическими наблюдениями Вселенной. || Раздел астрономии, посвященный этому учению. [От греч. κόσμος — вселенная и λόγος — учение] Малый академический словарь
  2. космология — Косм/о/ло́г/и/я [й/а]. Морфемно-орфографический словарь
  3. Космология — (от Космос и ...Логия учение о Вселенной (См. Вселенная) как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной как части целого; раздел астрономии. Выводы... Большая советская энциклопедия
  4. КОСМОЛОГИЯ — В развитых мифологич. системах комплекс религ.-филос. представлений о мироустройстве (космография), происхождении вселенной (космогония) и гибели мира в результате вселенской катастрофы (эсхатология). Словарь по индуизму, джайнизму и сикхизму
  5. космология — орф. космология, -и Орфографический словарь Лопатина
  6. космология — Раздел астрономии, изучающий происхождение, свойства и эволюцию Вселенной. Физическая космология занимается наблюдениями, которые дают информацию о Вселенной в целом, а теоретическая космология — разработкой моделей... Большой астрономический словарь
  7. космология — КОСМОЛОГИЯ и, ж. cosmologie f., нем. Kosmologie <�гр. kosmos космос + logos наука. Учение о вселенной Сл. 18. Впервые отмечается в "Покоящемся трудолюбце" 1785 г. ЭС. Космология, показывающая силы небесных и земных вещей. ПТ 4 103. // Сл. 18. Словарь галлицизмов русского языка
  8. КОСМОЛОГИЯ — КОСМОЛОГИЯ, отрасль науки, которая объединяет методы астрономии, математики и физики для того, чтобы понять строение и эволюцию Вселенной. Научно-технический словарь
  9. космология — КОСМОЛОГИЯ -и; ж. [от греч. kosmos — вселенная и logos — учение] Учение об общих закономерностях строения всей охватываемой астрономическими наблюдениями Вселенной. // Раздел астрономии, посвящённый этому учению. ◁ Космологический, -ая, -ое. Толковый словарь Кузнецова
  10. космология — Космологии, мн. нет, ж. [от греч. kosmos – мир и logos – учение]. Общее учение о мире в его целом. Космология Лейбница. Индусская космология. Большой словарь иностранных слов
  11. космология — КОСМОЛ’ОГИЯ, космологии, мн. нет, ·жен. (от ·греч. kosmos — мир и logos — учение). Общее учение о мире в его целом. Космология Лейбница. Индусская космология. Толковый словарь Ушакова
  12. космология — космология ж. Учение об общих закономерностях строения всей охватывающей астрономическими наблюдениями Вселенной. Толковый словарь Ефремовой
  13. КОСМОЛОГИЯ — КОСМОЛОГИЯ (от космос и ...логия) — физическое учение о Вселенной как целом, основанное на результатах исследования наиболее общих свойств (однородности, изотропности и расширения) той части Вселенной, которая доступна для астрономических наблюдений. Большой энциклопедический словарь
  14. космология — См. космос Толковый словарь Даля
  15. космология — КОСМОЛОГИЯ, и, ж. Учение о Вселенной. | прил. космологический, ая, ое. Толковый словарь Ожегова