КОСМИЧЕСКИЕ ЛУЧИ

Поток элем. ч-ц высокой энергии, преим. протонов, приходящих на Землю прибл. изотропно со всех направлений косм. пр-ва, а также рождённое ими в атмосфере Земли в результате вз-ствия с ат. ядрами воздуха вторичное излучение, в к-ром встречаются практически все известные элем. ч-цы. Среди первичных К. л. различают высоко-энергичные (вплоть до 1021 эВ) галактические К. л. (ГКЛ), приходящие к Земле извне Солн. системы; и солнечные К. л. (СКЛ) умеренных энергий (?1010 эВ), связанные с активностью Солнца.

Существование К. л. было установлено в 1912 австр. физиком В. Ф. Гессом по производимой ими ионизации воздуха; возрастание ионизации с высотой доказывало их внеземное происхождение; отклонение их в магн. поле (амер. физик Р. Э. Милликен, 1923; Д. В. Скобельцын, 1927; С. Н. Вернов, 1935) доказало, что К. л. представляют собой поток заряж. ч-ц. В 30—40-х гг. проводились интенсивные исследования вторичной компоненты К. л. с помощью камеры Вильсона, газоразрядных счётчиков, яд. фотоэмульсий. С 50-х гг. центр тяжести науч. исследований постепенно перемещается в сторону изучения первичных К. л. В 80-е гг. регистрация разл. компонент К. л. в широком диапазоне энергий проводится наземной мировой сетью станций (на уровне моря, в горах, шахтах), в стратосфере, на ИСЗ, на межпланетных автоматич. станциях.

В исследовании К. л. чётко выделяются два осн. аспекта — космофизический и ядерно-физический. В первом занимаются изучением природы К. л., их происхождения, состава, энергетич. спектров, временных вариаций, связи разл. явлений в К. л. с хар-ками среды, в к-рой происходит их движение; исследуются возможные источники К. л., механизмы ускорения ч-ц и т. п. Во втором направлении изучаются вз-ствия К. л. высоких энергий с в-вом, генерация элем. ч-ц в атмосфере и их св-ва. Этот аспект тесно примыкает к физике ч-ц высоких энергий. Именно детальное изучение зарядов и масс ч-ц вторичных К. л. привело к открытию таких элем. ч-ц, как позитрон, мюоны, p- и К-мезоны, L-гиперон. К. л. ещё долго будут оставаться уникальным источником ч-ц сверхвысоких энергий, т. к. в самых больших совр. ускорителях макс. достигнутая энергия пока ещё =1014 эВ.

Энергетический спектр. Большое значение для определения источника К. л. имеет тщательное измерение их спектров. В интервале энергий от 1010 до 1015 эВ (рис. ) интегр. спектр всех ч-ц ГКЛ описывается степенной ф-цией ?-g с пост. показателем степени g»1,7 (? — полная энергия). Как видно из этого выражения и рис., интенсивность тем больше, чем меньше энергия ч-цы. Однако при энергиях ?<1010 эВ этот рост замедляется и практически совсем прекращается при ??109 эВ (спектр становится плоским). Это значит, что в ГКЛ почти нет ч-ц очень малых энергий. При больших энергиях в интервале 1015— 1017 эВ падение интенсивности происходит быстрее, с g»2,2. «Излом»КОСМИЧЕСКИЕ ЛУЧИ

Энергетич. спектр косм. лучей: а — дифф. спектр протонов и ос-частиц умеренных энергий; б, в — интегр. спектры всех ч-ц в области высокой и сверхвысокой энергий. Точки — данные наблюдений.

Состав ГКЛ. Поток К. л. у Земли равен =1 частице (см2•с). Более 90% ч-ц первичных К. л. всех энергий составляют протоны, 7% — a-частицы и лишь небольшая доля (1%) приходится на ядра более тяжёлых элементов. Такой состав прибл. соответствует ср. распространённости элементов во Вселенной с двумя существ. отклонениями: в К. л. значительно больше лёгких (Li, Be, В) и тяжёлых ядер с Z?20. Согласно совр. представлениям, «обогащение» К. л. тяжёлыми ядрами явл. следствием более эффективного их ускорения в источнике по сравнению с лёгкими ядрами. А большое кол-во ядер Li, Be, В по сравнению со ср. распространённостью связано с расщеплением тяжёлых ядер при столкновениях с ядрами атомов межзвёздной среды. Из наблюдаемого кол-ва ядер лёгкой группы и изотопного состава ядер Be получены оценки расстояния, проходимого К. л. в межзвёздной среде (=3 г/см2), и времени жизни К. л. в Галактике (=3•107 лет). В составе К. л. имеются также эл-ны (1%), обнаружение к-рых (1961) в необходимом кол-ве экспериментально подтвердило гипотезу о синхротронной природе косм. радиоизлучения. Благодаря этому появилась возможность исследовать К. л. не только вблизи Земли, но и в удалённых областях Галактики с помощью радиоастр. методов. Радиоастр. данные показали, что К. л. более или менее равномерно заполняют всю Галактику.

С помощью энергетич. спектра можно вычислить поток и плотность энергии К. л. в пр-ве. Плотность энергии ГКЛ составляет прибл. 10-12 эрг/см3=0,6 эВ/см3, что сравнимо по порядку величины с плотностью всех др. видов энергии: гравитац., магн., кинетич. энергии движения межзвёздного газа. Для решения вопроса об источнике К. л. привлекаются данные астрофизики и радиоастрономии. Как показывают оценки, наблюдаемую величину плотности энергии К. л. могут обеспечить вспышки сверхновых звёзд, к-рые происходят в нашей Галактике не реже одного раза в сто лет, и образующиеся при этом пульсары. Отсюда можно предполагать, что К. л. имеют галактическое (а не метагалактическое) происхождение. Ускорение ч-ц до сверхвысоких энергий может происходить при столкновении с движущимися нерегулярными и неоднородными межзвёздными магн. полями. Хим. состав К. л. формируется при прохождении ими межзвёздной среды. За счёт длит. диффузии в Галактике в межзвёздных магн. полях происходит перемешивание К. л. от разл. источников и достигается наблюдаемая изотропия (=0,1%) косм. излучения.

Вариации К. л. Геомагнитные эффекты. Проникая в Солн. систему, ГКЛ вступают во вз-ствие с межпланетным магн. полем, к-рое формируется намагнич. плазмой, движущейся радиально от Солнца (солнечный ветер). В Солн. системе устанавливается равновесие между конвективным потоком К. л., выносимым солнечным ветром наружу, и потоком, направленным внутрь системы. Влияние межпланетного поля «чувствуют» ч-цы сравнительно небольших энергий (? <1010 эВ), ларморовский радиус к-рых сравним с размерами неоднородностей межпланетного магн. поля. Параметры гелиосферы изменяются с изменением солн. активности в течение 11-летнего цикла, и в ГКЛ наблюдается модуляция интенсивности, наз. 11-летней вариацией. Интенсивность К. л. изменяется в лротивофазе с солн. активностью. Амплитуда вариаций различна для разных энергий.

Попадая в магн. поле Земли, К. л. отклоняются от первонач. направления вследствие действия на них Лоренца силы. На заданную широту вблизи Земли с данного направления приходят только ч-цы с энергией, превышающей нек-рое пороговое значение. Этот эффект наз. геомагнитным обрезанием. Отклоняющее действие геомагн. поля проявляется тем сильнее, чем меньше геомагн. широта места наблюдения. Так, напр., с вертик. направления на экватор попадают протоны только с энергией ???пор»1,5•1010 эВ, на геомагн. широту 51° — с энергией ???пор»2,5•109 эВ. Так как ГКЛ имеют падающий с ростом энергии спектр, на экваторе наблюдается меньшая интенсивность, чем на высоких широтах,— т. н. широтный эффект К. л.

Взаимодействие К. л. с веществом. Попадая в атмосферу Земли, высокоэнергичные протоны и др. ядра К. л. испытывают столкновения с ядрами атомов воздуха (в осн. азота и кислорода). В результате вз-ствия происходит расщепление ядер и рождение неск. нестабильных элем. ч-ц (т. н. множественные процессы). Ср. пробег до яд. вз-ствия в атмосфере для протонов прибл. равен 90 г/см2, что составляет =1/11 часть всей толщи атмосферы, следовательно, протон успеет неск. раз провзаимодействовать с ядрами, прежде чем достигнет поверхности Земли. Поэтому вероятность дойти до уровня моря у первичных К. л. крайне мала. На больших глубинах в атмосфере регистрируется вторичное излучение, разделяемое в соответствии с природой и св-вами на ядерно-активную, мюонную и электронно-фотонную компоненты.

При вз-ствии первичной ч-цы с ядрами атомов воздуха рождаются почти все известные элем. ч-цы, среди к-рых гл. роль играют p-мезоны, как заряженные, так и нейтральные. Нуклоны и не успевшие распасться p±-мезоны образуют ядерно-активную компоненту вторичного излучения. Взаимодействуя с ядрами атомов воздуха, они, подобно первичной ч-це, рождают новые каскады ч-ц до тех пор, пока их энергия не снизится до ?=109 эВ. На уровне моря остаётся менее 1% ядерно-активных ч-ц.

Мюонная и нейтринная компоненты образуются при распаде p±-мезонов (p±®m±+vm (v=m)). Высокоэнергичные мюоны слабо взаимодействуют с в-вом, поэтому они доходят до уровня моря и проникают глубоко под землю. Нейтроны и мюоны вторичного излучения постоянно регистрируются сетью наземных станций. На основе этих измерений исследуются вариации интенсивности первичных К. л.

Возникновение электронно-фотонной компоненты связано с распадом p°-мезонов: p0®2g. В кулоновском поле ядер каждый g-квант рождает электрон-позитронную пару (g®е+ +е-). За счёт тормозного излучения ч-ц этой пары вновь возникают g-кванты, к-рые рождают, в свою очередь, электрон-позитронные пары. Повторение этого процесса приводит к лавинообразному размножению числа ч-ц до тех пор, пока при нек-рой ?крит, преобладающими не станут конкурирующие процессы потери энергии g-квантами и эл-нами (позитронами). После этого происходит затухание каскада. Число ч-ц в максимуме каскада пропорц. энергии первичной ч-цы. Каскады, образующиеся при К. л. с ?>1014 эВ, содержат 106 — 109 ч-ц; они наз. широкими атм. ливнями (ШАЛ). С помощью ШАЛ проводится исследование К. л. в области сверхвысоких энергий.

Солнечные К. л., в отличие от первичных ГКЛ, наблюдаются эпизодически после нек-рых хромосферных вспышек. Частота появления СКЛ коррелирует с уровнем солн. активности: в годы максимума солн. активности регистрируется =10 событий в год с энергией ч-ц ??107 эВ, а в годы минимума — одно или не бывает вовсе.

В СКЛ наблюдаются ч-цы с более низкими (по сравнению с ГКЛ) энергиями; энергии протонов обычно ограничиваются долями ГэВ, иногда достигают неск. ГэВ. Интенсивность СКЛ падает с уменьшением энергии ч-ц резче, чем интенсивность ГКЛ, причём показатель степени интегр. спектра изменяется от события к событию в пределах от 2 до 7. Верх. предел энергии СКЛ точно не установлен. Ниж. граница регистрируемых ч-ц СКЛ составляет десятки кэВ. В большинстве случаев состав СКЛ в интервале ?=(1—3) •107 эВ/нуклон соответствует распространённости элементов на Солнце. Часто наблюдаются вариации в 2—3 раза относит. содержания ядер Не и Fe. Из данных по составу «легких» ядер, как и в случае ГКЛ, получена оценка толщи в-ва, проходимого СКЛ в атмосфере Солнца, составляющая ?0,2 г/см2. Это показывает, что ускорение ч-ц во время солн. вспышки происходит не в глубине солн. атмосферы, а в верхних её слоях — короне или верх. хромосфере. В интервале ?<107 эВ/нуклон потоки СКЛ часто обогащены тяжёлыми ядрами, что указывает на наличие преимуществ. ускорения тяжёлых ядер на Солнце в области малых энергий. Ускорение ч-ц на Солнце интенсивно исследуется благодаря наличию наблюдательных данных по спектрам и потокам СКЛ, полученным с ИСЗ и межпланетных автоматич. станций, а также благодаря процессам, сопровождающим генерацию СКЛ (радиоизлучение, рентг. излучение).

Интенсивность СКЛ различается от события к событию на неск. порядков величины, более интенсивные события наблюдаются, как правило, после сильных хромосферных вспышек. Изменения интенсивности связаны, очевидно, с разными условиями генерации и выхода ч-ц из области ускорения. Наибольшее значение интенсивности измерено после вспышки 4 августа 1972 , оно составило 7 •104 частиц/(см2 •с•ср) для ч-ц с энергией ?:?107 эВ.

Длительность возрастаний интенсивности СКЛ составляет неск. суток для ??107 эВ и неск. часов для больших энергий. В начале возрастаний наблюдается анизотропия ч-ц вдоль силовых линий межпланетного магн. поля.

Значит. рост потока СКЛ вызывает дополнит. ионизацию в ионосфере, обусловливая помехи и прекращение связи на КВ. Интенсивные потоки СКЛ представляют радиац. опасность для косм. полётов.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Космические лучи — Поток частиц высокой энергии, преимущественно протонов, приходящих на Землю из мирового пространства (первичное излучение), а также рожденное ими в атмосфере Земли в результате взаимодействия с атомными ядрами вторичное излучение... Большая советская энциклопедия
  2. космические лучи — Высокоэнергичные элементарные частицы, движущиеся сквозь Вселенную фактически со скоростью света. Они были открыты В.Ф. Гессом в 1912 г. во время полета на воздушном шаре. Большой астрономический словарь
  3. КОСМИЧЕСКИЕ ЛУЧИ — КОСМИЧЕСКИЕ ЛУЧИ — поток стабильных частиц высоких энергий (приблизительно от 1 до 1012 ГэВ) — приходящих на Землю из мирового пространства (первичное излучение) — а также рожденное этими частицами при взаимодействиях с атомными ядрами атмосферы вторичное... Большой энциклопедический словарь