КОЛЕБАНИЯ

Движения или процессы, обладающие той или иной степенью повторяемости во времени. К. свойственны всем явлениям природы: пульсирует излучение звёзд, внутри к-рых происходят циклич. яд. реакции; с высокой степенью периодичности вращаются планеты Солн. системы; движение Луны вызывает приливы и отливы на Земле; в земной ионосфере и атмосфере циркулируют потоки заряж. и нейтр. ч-ц; ветры возбуждают К. и волны на поверхности водоёмов и т. д. Внутри любого живого организма непрерывно происходят разнообразные, ритмично повторяющиеся процессы, напр. с удивительной надёжностью бьётся человеческое сердце, даже психика людей подвержена К. В виде сложнейшей совокупности К. ч-ц и полей (эл-нов, фотонов, протонов и др.) можно представить «устройство» микромира.

В технике К. либо выполняют определённые функцией, обязанности (маятник, колебат. контур, генератор К. и др.), либо возникают как неизбежное проявление физ. св-в (вибрации машин и сооружений, неустойчивости и вихревые потоки при движении тел в газах и т. д.).

В физике выделяются К. механические, электромагнитные и их комбинации. Это обусловлено той исключит. ролью, к-рую играют гравитац. и эл.-магн. вз-ствия в масштабах, характерных для жизнедеятельности человека. С помощью распространяющихся механич. К. плотности и давления воздуха, воспринимаемых нами как звук, а также очень быстрых К. электрич. и магн. полей, воспринимаемых нами как свет, мы получаем б. ч. прямой информации об окружающем мире.

К. любых физ. величин почти всегда связаны с попеременным превращением энергии одного вида в энергию другого вида. Так, при отклонении маятника (груза на нити, рис. 1) от положения равновесия увеличивается потенц. энергия груза, запасённая им в поле тяжести; если груз отпустить, он падает, вращаясь около точки подвеса как около центра; в крайнем нижнем положении потенц. энергия превращается в кинетическую, и груз проскакивает это равновесное положение, увеличивая снова потенц. энергию. Далее процесс перекачки энергии повторяется, пока рассеяние (диссипация) энергии, обусловленное, напр., трением, не приводит к полному прекращению К.КОЛЕБАНИЯ

Рис. 1. Схема колебаний маятника: m — масса груза; g — ускорение силы тяжести; Dh — высота подъёма груза; v — его макс. скорость.

В случае К. электрич. зарядов и токов в колебательном контуре или электрич. и магн. полей в эл.-магн. волнах роль потенциальной играет электрическая энергия, а кинетической — магнитная.

По мере изучения К. разл. физ. природы возникло убеждение о возможности общего, «внепредметного», подхода к ним, основанного на св-вах и закономерностях колебат. процессов вообще. В результате появилась теория К. и волн. Осн. матем. аппаратом теории К. первоначально служили дифф. ур-ния в обыкновенных производных. Однако со временем изучаемые ею модели по существу распространились на все виды описаний динамич. систем: от интегродифференциально разностных до статистических (подробнее (см. КОЛЕБАНИЙ И ВОЛН ТЕОРИЯ)).

Кинематика К. позволяет выделить несколько наиб. типичных примеров (рис. 2). Для простоты будем говорить о К., описываемых ф-цией времени u(t), хотя с кинематич. точки зрения пространств. и временные К. взаимно сводятся друг к другу путём перехода из одной системы отсчёта к другой.КОЛЕБАНИЯ. Рис. 2

Рис. 2. Разл. виды колебаний: а — периодич. колебания сложной формы; б — прямоуг. колебания; в — пилообразные; г — синусоидальные; д — затухающие; е — нарастающие; ж — амплитудно-модулированные; в — частотно-модулированные; и — колебания, модулированные по амплитуде и по фазе; к — колебания, амплитуда и фаза к-рых — случайные ф-ции; л — случайные колебания; u — колеблющаяся величина; t — время.

На рис. 2, а— г показаны периодич. К. разл. формы, в к-рых любое значение u(t) повторяется через одинаковые промежутки времени Т, наз. периодом К., т. е. u(t+T)=u(t). Величину, обратную периоду Т и равную числу К. в ед. времени, наз. частотой К. n=1/T; пользуются также круговой или циклич. частотой w=2pn. В случае пространств. К. вводят аналогичные понятия пространств. периода (или длины волны Я) и волн. числа k=2p/l.

Разновидностями периодич. К. явл. прямоугольные (рис. 2, б), пилообразные (рис. 2, в) и наиб. важные синусоидальные, или гармонические колебания (рис. 2, г). Последние могут быть записаны в виде:

u(t)=asinj=asin(wt+j0),

где а — амплитуда, j — фаза, j0 — её нач. значение. В случае строго гармонич. К. величины а, w и j0 не зависят от времени. Часто употребляется также комплексная запись синусоидальных К.КОЛЕБАНИЯ. Рис. 3

к-рая удобна при расчётах, однако физ. смысл имеют отдельно вещественная и мнимая части. При этом комплексная амплитуда А»Аеij0 объединяет в себе действит. значения амплитуды и фазы К. Для показанного на рис. 2, д затухающего К.КОЛЕБАНИЯ. Рис. 4

где коэфф. затухания а можно относить либо к мнимой части комплексной частоты w»w+ia, либо к экспоненциально убывающей амплитуде. Иногда вводят понятие декремента затухания d=aТ; при отрицательных б этот коэфф. наз. инкрементом, амплитуда соответствующего К. экспоненциально нарастает. У К. с перем. амплитудой периодичность нарушается; но при a<-w их всё же можно считать почти (квази) периодическими, а при a->w — почти апериодическими, т. е. по существу уже не К., а монотонными процессами. Для передачи информации применяются модулиров. К. (рис. 2, ж—и), амплитуда, фаза или частота к-рых изменяются по определ. закону в соответствии с передаваемыми сигналами, напр. в радиовещании ВЧ К. модулируются К. звук. частот, передающими речь, музыку (см. МОДУЛЯЦИЯ КОЛЕБАНИЙ).

При изучении стохастич. процессов приходится иметь дело с частично и полностью случайными К. На рис. 2, к показан пример синусоидального К., модулированного по амплитуде и фазе случайными ф-циями, а на рис. 2, л дана одна из реализаций совершенно неупорядоченного процесса («белого шума»), к-рый лишь условно можно отнести к К.

Колебат. движения на плоскости и в пр-ве в принципе могут быть представлены как совокупность одномерных К. вдоль соответствующих осей координат. Так, два гармонич. К. (одномерные осцилляторы) с частотами nw (вдоль оси х) и mw (вдоль оси у^х) (при рациональном отношении п/т) явл. проекциями сложных периодических плоских К., наз. Лиссажу фигурами. Равномерное движение по окружности (ротатор) можно разложить на два одинаковых гармонич. К. (n=m), сдвинутых по фазе на p/2. В природе и во мн. техн. устройствах часто возникают движения, почти не отличающиеся (на протяжении больших промежутков времени) от чисто гармонических или равномерно вращательных. Мн. физ. приборы (спектр. анализаторы) выделяют из произвольных процессов наборы К., близких к гармоническим. Возможна и обратная процедура синтеза гармонич. К., математически соответствующая рядам и интегралам Фурье, в силу к-рой любой временной процесс можно воссоздать сложением или интегрированием гармонич. К. разл. частот и амплитуд.

Динамика К. Свободные, или собственные, К. явл. движением системы, предоставленной самой себе, в отсутствии внеш. воздействий. При малых отклонениях от состояния равновесия движения системы удовлетворяют суперпозиции принципу, согласно к-рому сумма двух произвольных движений также составляет допустимое движение системы; такие движения описываются линейными ур-ниями (в частности, дифференциальными). Если система ещё и консервативна (т. е. в ней нет потерь или притока энергии извне), а её параметры не изменяются во времени (о переменных параметрах будет сказано ниже), то любое собств. К. может быть однозначно представлено как сумма нормальных колебаний, синусоидально изменяющихся во времени с определёнными собств. частотами. В колебат. системах с сосредоточенными параметрами, состоящих из N связанных осцилляторов (напр., цепочка из колебат. электрич. контуров или из соединённых упругими пружинками шариков), число норм. колебаний (мод) равно N. В системах с распределёнными параметрами (струна, мембрана, полый или открытый резонатор) таких К. существует бесконечное множество. Напр., для струны длиной L с закреплёнными концами моды отличаются числом полуволн, к-рые можно уложить на всей длине струны: L=nl/2(n=0, 1, 2, . . ., ?). Если скорость распространения волн вдоль струны равна v, то спектр собств. частот определяется ф-лой: wn=knv=2p/Tn=2pv/ln=npv/L (n=0, 1, 2, . . ., ?). Наличие дисперсии, когда v=v(w), искажает это простое эквидистантное распределение частот, спектр к-рых определяется уже из т. н. дисперсионного ур-ния: wn=w(kn)=(np/L)v(wn). В реальных системах собств. К. будут затухать из-за потерь, поэтому их можно считать приближённо гармоническими лишь в интервале времени, меньшем 1/a. Затухающее К. (рис. 2, д) можно представить в виде пакета гармонич. К., непрерывно заполняющих интервал частот (w0:±Dw), тем более узкого, чем меньше a, т. к. Dw=a. В этом случае говорят об уширении спектр. линии. Т. о., сгущение спектра из-за дисперсии и уширение линии из-за потерь может повлечь за собой превращение дискр. спектра в сплошной (ширина линий становится прибл. равной интервалу между ними, т. е Dw=a=(wn+1-wn).

Наличие даже слабой нелинейности систем с дискр. спектром собств. частот приводит к «перекачке» энергии К. по спектр. компонентам; при этом возникают процессы «конкуренции мод» — выживание одних и подавление других. Дисперсия может стабилизировать эти процессы и привести к формированию устойчивых пространственно-временных образований, примерами к-рых в системах с непрерывным спектром явл. солитоны.

Возбуждение К. происходит: либо путём непосредств. воздействия на колебат. систему (раскачка маятника периодич. толчками, включение периодической эдс в колебат. контур и т. д.) — в этом случае говорят о вынужденных колебаниях; либо путём периодич. изменения параметров колебат. системы (длины подвеса маятника, ёмкости или самоиндукции контура, коэфф. упругости струны и т. п.) — т. н. параметрич. возбуждение колебаний; либо благодаря развитию неустойчивостей и возникновению самосогласованных колебат. движений внутри самой системы — т. н. автоколебания.

Особое значение при возбуждении К. имеет явление резонанса, состоящее в резком увеличении амплитуды К. при приближении частоты внеш. воздействия к нек-рой резонансной частоте, характеризующей систему. Если последняя линейна и параметры её не зависят от времени, то резонансные частоты совпадают с частотами её собств. К. и соответствующий отклик тем сильнее, чем выше добротность К. Раскачка происходит до тех пор, пока энергия, вносимая извне (напр., при каждом отклонении маятника), превышает потери за период осцилляции. Для линейных К. энергия, получаемая от источника, пропорц. первой степени амплитуды, а потери растут пропорц. её квадрату, поэтому баланс энергий всегда достижим.

При больших амплитудах К. становятся нелинейными, происходит смещение собств. частот системы и обогащение их спектра гармониками и субгармониками. Ограничение амплитуды колебаний может быть обусловлено как нелинейной диссипацией энергии, так и уходом системы из резонанса. При возбуждении К. в системах с распределёнными параметрами макс. амплитуды достигаются в случае пространственно-временного резонанса, когда не только частота внеш. воздействия, но и его распределение по координатам хорошо «подогнаны» к структуре норм. моды или, на языке бегущих волн, когда наступает совмещение не только их частот (резонанс), но и волн. векторов (синхронизм) .

Существует нек-рый выделенный класс вынужденных К., при к-ром внеш. воздействие, не являясь чисто колебательным (напр., мгновенный удар), имеет, однако, настолько богатый частотный спектр, что в нём всегда содержатся резонансные частоты системы. Напр., заряж. ч-ца, пролетающая между двумя металлич. плоскостями, возбуждает почти весь набор нормальных эл.-магн. К. и волн, свойственный этой системе. Сюда же следует отнести черенковское излучение (см. ЧЕРЕНКОВА — ВАВИЛОВА ИЗЛУЧЕНИЕ) или тормозное излучение ч-цы в однородных средах, когда и спектр внеш. воздействия и спектр собственных К.— оба сплошные, т. е. в них представлены все возможные частоты. Наконец, есть и совсем аномальный случай вынужденных К. в системах с непрерывным спектром собств. частот типа ротатора (маховик, колесо, эл-н в магн. поле и т. п.), где вращат. движение (а следовательно, и два ортогональных колебат. движения) может возбуждаться силами, неизменными во времени.

Параметрич. возбуждение К. возникает при периодич. воздействии на те параметры системы, к-рые определяют величину запасённой колебат. энергии: в электрич. контуре — это индуктивность или ёмкость (но не сопротивление), у маятника — это длина нити или масса груза (но не коэфф. трения). (см. ПАРАМЕТРИЧЕСКИЙ РЕЗОНАНС, ПАРАМЕТРИЧЕСКАЯ ГЕНЕРАЦИЯ И УСИЛЕНИЕ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ).

При определ. условиях в такой нелинейной колебат. системе могут возникать непрекращающиеся самоподдерживающиеся К., или автоколебания, при к-рых внеш. источнику отводится лишь ф-ция восполнения потерь энергии на диссипацию. Процесс формирования автоколебаний обычно состоит в последовательном самосогласовании движений. Пусть нач. состояние системы неустойчиво либо по отношению к ничтожно малым флуктуациям (мягкий режим возбуждения), либо по отношению к определ. конечным возмущениям (жёсткий режим возбуждения). В любом случае спонтанно (случайно) возникшее К. начнёт увеличиваться по амплитуде (процесс усиления К.), эти усиленные К. через элемент положительной обратной связи, обеспечивающий самосогласованность фаз, снова «подаются» в место своего возникновения и снова усиливаются и т. д. Получается очень быстрый (чаще всего экспоненциальный) рост К. Ограничение К. наступает из-за конечности энергетич. ресурсов, а также из-за рассогласованности фаз (подробнее (см. АВТОКОЛЕБАНИЯ)).

К. могут быть самого широкого диапазона частот v и периодов Т. Так, приведём для примера значения Т или v для нек-рых важнейших К. и вращений: теор. модель пульсации Вселенной (T=1017—1018 с); обращение Солнца вокруг центра Галактики (T=1016 с); ледниковые периоды на Земле (7'=1011—1012 с); наибольший цикл солн. активности (T=7•108 с); обращение Земли вокруг Солнца — год (T=3•107 с); обращение Луны вокруг Земли — лунный месяц (Т=2,4•106 с); вращение Земли вокруг своей оси — сутки (T=9•104 с); оборот часовой стрелки (T=4,3•104 с); оборот минутной стрелки (T=36•103с); ветровые волны на море (Т=1 с или n=l Гц); опасные для человека инфразвуки (n=5—10 Гц); колесо автомобиля при скорости 60 км/ч (n=10 Гц); звук. волны, воспринимаемые человеком на слух (n=20—2•104 Гц); стандартная частота К. перем. тока (n=50 Гц); УЗ (n=2•104—109 Гц); эл.-магнитного К. радиодиапазона (n=105—3•108 Гц); эл.-магн. К. СВЧ диапазона (n=3•108—3•1011); гиперзвук (n=109—1013 Гц); типичные колебания атомов в молекуле (n=1011—1013 Гц); оптика (видимый свет) (n=0,4•1014—0,75•1014 Гц); УФ излучение (n=1015—1017 Гц); рентг. изяучение (n=1018—1019 Гц); гамма-лучи (n=1020 Гц); короткоживущие частицы — резонансы (T=10-22—10-24 с).

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Колебания — Изменения состояний, более или менее точно повторяющиеся. Различают К. механические, электромеханические, термодинамические и др. Непосредственным источником муз. звуков (см. Звук музыкальный) являются механич. Музыкальная энциклопедия
  2. Колебания — Движения (изменения состояния), обладающие той или иной степенью повторяемости. При К. маятника повторяются отклонения его в ту и другую сторону от вертикального положения. При... Большая советская энциклопедия
  3. КОЛЕБАНИЯ — КОЛЕБАНИЯ — движения (изменения состояния) — обладающие той или иной степенью повторяемости. Наиболее распространены: 1) механические колебания: колебания маятника, моста, корабля на волне, струны... Большой энциклопедический словарь