ГАЗОВАЯ ДИНАМИКА

Раздел гидроаэромеханики, в к-ром изучается движение сжимаемых сплошных сред (газа, плазмы) и их вз-ствие с тв. телами. Как часть физики, Г. д. связана с термодинамикой и акустикой.

Св-во сжимаемости состоит в способности в-ва изменять свой первонач. объём под действием перепада давления или при изменении темп-ры. Сжимаемость становится существенной при больших скоростях движения среды, соизмеримых со скоростью распространения звука в этой среде и превосходящих её, т. к. при таких скоростях в среде могут возникать большие перепады давления (см. БЕРНУЛЛИ УРАВНЕНИЕ) и большие градиенты темп-ры. В совр. Г. д. изучают также течения газа при высоких темп-pax, сопровождающиеся хим. (диссоциация, горение и др. хим. реакции) и физ. (ионизация, излучение) процессами. Изучение движения электропроводных газов в присутствии магн. и электрич. полей составляет предмет магн. газодинамики. Движение газов при таких условиях, когда газ нельзя считать сплошной средой, а необходимо рассматривать вз-ствие составляющих его молекул между собой и с тв. телами, относится к области динамики разреженного газа, основанной на молекулярно-кинетич. теории газов. Динамика больших возд. масс при малых скоростях движения составляет основу динамич. метеорологии. Г. д. исторически возникла как дальнейшее развитие и обобщение аэродинамики, поэтому часто говорят о единой науке — аэрогазодинамике.

Исходные ур-ния Г. д. явл. следствием применения осн. законов механики и термодинамики к движущемуся объёму сжимаемого газа. Неустановившиеся движения вязкого сжимаемого газа, когда параметры газового потока в каждой его точке изменяются с течением времени, описываются полными Навье — Стокса уравнениями. Одной из осн. физ. особенностей движения сжимаемых сред явл. возможность образования и распространения в них ударных волн, к-рые движутся со скоростью, превышающей скорость распространения звук. волн и представляют собой узкую область чрезвычайно больших градиентов давления, плотности, темп-ры и скорости газа.

Интенсивное развитие Г. д. связано с быстрым развитием соответствующих областей техники: реактивной авиации, ракетного оружия, созданием ат. и водородных бомб, взрыв к-рых влечёт за собой распространение сильных взрывных и ударных волн. Задачи Г. д. при проектировании разнообразных аппаратов, двигателей и газовых машин состоят в определении сил давления и трения, темп-ры и теплового потока в любой точке поверхности тела или канала, омываемых газом, в любой момент времени. При исследовании распространения газовых струй, взрывных и ударных волн, горения и детонации методами Г. д. определяются давление, темп-pa и др. параметры газа во всей области распространения. Изучение поставленных техникой сложных задач превратило совр. Г. д. в науку о движении произвольных смесей газов, к-рые могут содержать также твёрдые и жидкие ч-цы (напр., выхлопные газы ракетных двигателей на жидком или твёрдом топливе), причём параметры, характеризующие состояние этих газов — давление, темп-pa, плотность, электропроводность и др., могут изменяться в самых широких пределах.

Законами Г. д. широко пользуются во внеш. и внутр. баллистике, при изучении взрыва, горения, детонации, конденсации в движущемся потоке.

Для совр. Г. д. характерно неразрывное сочетание расчётно-теор. методов, использование ЭВМ и постановка сложных аэродинамич. и физ. экспериментов. Теор. представления, частично опирающиеся на найденные экспериментальным путём закономерности, позволяют описать с помощью соответствующих ур-ний движение газовых смесей сложного состава, в т. ч. многофазных смесей при наличии физ.-хим. и фазовых превращений. Методами прикладной математики разрабатываются эфф. способы решения этих ур-ний на ЭВМ. Наконец, из эксперим. данных определяются необходимые значения физ. и хим. характеристик, свойственных изучаемой среде и рассматриваемым процессам (коэфф. вязкости, теплопроводности, скорости хим. реакций, времена релаксации и др.).

Многие задачи, поставленные совр. техникой перед Г. д., пока не могут быть решены расчётно-теор. методами, в этих случаях широко пользуются газодинамич. экспериментами, поставленными на основе подобия теории и законов гидродинамич. и аэродинамич. моделирования. Газодинамич. эксперименты проводятся в сверхзвук. и гиперзвук. аэродинамических трубах, на баллистич. установках, в ударных и импульсных трубах и на др. газодинамич. установках спец. назначения (см. АЭРОДИНАМИЧЕСКИЕ ИЗМЕРЕНИЯ). Прикладная Г. д., в к-рой обычно применяются упрощённые теор. представления об осреднённых по поперечному сечению параметрах газового потока и осн. закономерности движения, найденные эксперим. путём, используется при расчёте компрессоров и турбин, сопел и диффузоров, ракетных двигателей, аэродинамич. труб, эжекторов, газопроводов и мн. др. техн. устройств.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях

  1. Газовая динамика — Раздел гидро-аэромеханики (См. Гидроаэромеханика), в котором изучается движение сжимаемых газообразных и жидких сред и их взаимодействие с твёрдыми телами. Как часть физики, Г. д. связана с термодинамикой (См. Термодинамика) и акустикой (См. Акустика). Большая советская энциклопедия
  2. Газовая динамика — Раздел аэродинамики, в котором изучаются закономерности движения газов, а также механическое и тепловое взаимодействие между газом и движущимися в нём телами. Авиационный словарь
  3. ГАЗОВАЯ ДИНАМИКА — ГАЗОВАЯ ДИНАМИКА — раздел аэродинамики, изучающий движение сжимаемых газов, силовое и тепловое взаимодействие их с поверхностью обтекаемых ими тел. Большой энциклопедический словарь