ВИЗУАЛИЗАЦИЯ ЗВУКОВЫХ ПОЛЕЙ

Методы получения видимой картины распределения величин, характеризующих звуковое поле. В. з. п. применяется для изучения звук. полей сложной формы, для целей дефектоскопии и медицинской диагностики, а также для визуализации акустич. изображений предметов, к-рые получены либо с помощью акустич. фокусирующих систем (звук. оптика), либо с помощью голографии акустической. Простейший пример В. з. п.— Хладни фигуры.

Методы В. з. п. можно разбить на три группы: 1) методы, использующие основные, линейные хар-ки звук. поля — звуковое давление, колебательные смещения частиц, перем. плотность среды; 2) методы, основанные на квадратичных эффектах — на деформации водной поверхности под действием пондеромоторных сил акустич. поля, акустических течениях, эффекте диска Рэлея', 3) методы, использующие вторичные эффекты, возникающие при распространении звук. волн достаточной интенсивности в жидкости: тепловые эффекты, ускорение процессов диффузии, воздействие УЗ на фотослой, дегазация жидкости, акустич. кавитация.

В методах первой группы для получения картины распределения звук. давления самый распространённый приём — сканирование исследуемого поля миниатюрным приёмником звука, напряжение на выходе к-рого модулирует яркость перемещаемого синхронно с ним точечного источника света. Этот метод обычно используют в диапазоне частот до 100 кГц. Более современный вариант подобного метода В. з. п., используемый в диапазоне частот от 100 кГц до неск. десятков МГц, осуществляется в электронно-акустич. преобразователях: распределение звук. давления преобразуется с помощью пьезоэлектрич. пластинки в соответствующее распределение электрич. потенциала на её поверхности, к-рое считывается электронным лучом и преобразуется с помощью электроннолучевого осциллографа (кинескопа) в видимое изображение звук. поля.

Изменение плотности среды в звук. поле приводит к изменению показателя преломления для световых лучей; оно может быть выявлено чисто оптич. приёмами, как, напр., теневым методом, методом фазового контраста, дифракцией света на ультразвуке, методом акустич. голографии и др.

Среди методов второй группы наибольшее распространение получил метод поверхностного рельефа, основанный на св-ве свободной поверхности жидкости вспучиваться под действием падающего на неё изнутри жидкости звук. пучка. Получающийся рельеф хорошо виден при косом освещении. Для реализации метода диска Рэлея в смеси воды и ксилола образуют взвесь мельчайших чешуек лёгкого металла (напр., алюминия). В отсутствии звука эти чешуйки ориентированы беспорядочно, образуя при освещении матово-серую поверхность, а под действием звук. волны часть из них принимает определ. ориентацию, в результате чего на сером фоне появляется видимое изображение звук. поля.

В третьей группе методов следует отметить тепловое воздействие УЗ и его способность ускорять процессы диффузии. Для реализации теплового метода в исследуемое поле помещают тонкий экран из хорошо поглощающего звук материала. Неравномерный нагрев экрана под действием УЗ может быть визуализирован разл. способами: применением термочувствит. красок и жидких кристаллов, нанесённых тонким слоем на поглощающий экран; использованием электронно-оптич. преобразователей, чувствительных к ИК излучению; возбуждением или гашением люминесценции и пр.

На способности УЗ ускорять процессы диффузии основаны фотодиффуз. методы. Предварительно засвеченная фотобумага погружается в разбавленный р-р проявителя; в местах, на к-рые действовал УЗ, диффузия проявителя в желатину сильно ускоряется и бумага быстро чернеет.

Источник: Физический энциклопедический словарь на Gufo.me