ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ

Раздел геометрии, в котором свойства кривых, поверхностей и других геометрических многообразий изучаются методами математического анализа, в первую очередь — дифференциального исчисления. Работы по дифференциальной геометрии К. Гаусса (1777-1855), Г. Дарбу (1842-1917), Л. Бианки (1856-1928) и Л. Эйзенхарта (1876-1965) посвящены, главным образом, свойствам, проявляющимся в малой окрестности обычной точки многообразия. Это предмет так называемой дифференциальной геометрии "в малом". Более поздние работы, особенно начиная с 1930-х годов, посвящены изучению взаимосвязей между дифференциальной геометрией малых окрестностей и "глобальными" свойствами всего многообразия. Эту теорию называют дифференциальной геометрией "в целом". Кроме того, дифференциальная геометрия разбивается на разделы по аналогии с подразделением всей геометрии. Если на рассматриваемом многообразии определено расстояние, то возникает "метрическая" дифференциальная геометрия, называемая римановой в честь ее создателя Б. Римана (1826-1866). Аналогично проективная, аффинная и конформная дифференциальные геометрии занимаются изучением дифференциальных свойств пространств, в которых выделяются проективные, аффинные или конформные аспекты. Хотя первоначально дифференциальная геометрия занималась изучением свойств кривых и поверхностей в обычном пространстве, ныне она изучает многообразия любого числа измерений, которые могут быть (а могут и не быть) подпространствами евклидова пространства.

Кривые на плоскости и в пространстве. Будем задавать кривые на плоскости параметрическими уравнениями x = f (s), y = g (s), где s — натуральный параметр, длина дуги кривой. В векторной форме это можно записать так: X = F(s).

См. также ВЕКТОР. Тогда единичный вектор касательной к кривой задается формулой ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ

Вектор dT/ds в каждой точке кривой перпендикулярен к касательной, а его длина равна кривизне k кривой. Прямая, перпендикулярная касательной, проходящая через точку касания, называется нормалью к кривой. Следовательно, если N — единичный вектор нормали, то ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 2

Кроме того, можно показать, что ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 3

Если k задана как функция от s, например, k = f(s), то уравнения (1)-(3) определяют кривую однозначно с точностью до ее положения на плоскости. Соотношение k = f(s) называется внутренним уравнением кривой. Кривая в обычном пространстве, не лежащая на плоскости, называется пространственной кривой. Чтобы исследовать дифференциальную геометрию такой кривой, зададим ее параметрическими уравнениями x = f(s), y = g(s), z = k(s) (s — натуральный параметр) или, в векторной форме, уравнением X = F(s). Единичный вектор касательной определяется равенством ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 4

Вектор dT/ds в каждой точке задает нормаль к кривой; заметим, что это лишь одна из бесконечного множества нормалей к пространственной кривой в этой точке. Единичный вектор в направлении вектора dT/ds называется единичным вектором главной нормали N кривой, а длина вектора dT/ds, как и в случае плоских кривых, называется кривизной кривой: ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 5

Вектор dN/ds перпендикулярен к N, и поэтому его можно записать в виде ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 6

где B — единичный вектор нормали, перпендикулярной к N. Прямая, определяемая вектором B, называется бинормалью к кривой, а коэффициент t в (6) — кручением кривой. Наконец, рассмотрим вектор dB/ds; можно показать, что ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 7

Соотношения (5)-(7) называются формулами Френе. Из них следует, что если функции k = f (s) и t = y (s) заданы, то кривая определена однозначно с точностью до положения в пространстве. Таким образом, в этих формулах содержится вся теория пространственных кривых. Плоскость, определяемая векторами T и N, называется соприкасающейся, плоскость, содержащая векторы N и B, — нормальной и плоскость, проходящая через векторы B и T, — спрямляющей.

Поверхности в пространстве. Дифференциальные свойства поверхностей в обычном пространстве выводятся из их первой и второй основных квадратичных форм. Пусть поверхность задана параметрическими уравнениями x = f (u1, u2), y = g (u1, u2), z = h (u1, u2) или векторным уравнением X = F (u1, u2). (Верхними индексами здесь нумеруются переменные.) Дифференциал длины дуги ds определяется первой основной формой, а именно ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 8

где g11, g12 и g22 — функции от u1 и u2, определяемые выражениями ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 9

Полезно также ввести величины gij: ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 10

Первая фундаментальная форма полностью определяет внутреннюю геометрию поверхности, т.е. ту геометрию, которую наблюдал бы воображаемый обитатель поверхности, неспособный воспринимать происходящие вне нее явления. Такое двумерное существо находилось бы в положении, сравнимом с положением обычного трехмерного человека, воспринимающего геометрию нашего трехмерного пространства, но неспособного воспринимать свойства пространства большего числа измерений, в котором лежит наше пространство (если такое пространство действительно существует). Плоскость, касательная к поверхности в точке P, определяется двумя векторами в P, задаваемыми формулами ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 11

Единичный вектор нормали N определяется как общий перпендикуляр к T1 и T2. Как и в теории кривых, удобно рассмотреть векторы ¶Ti/¶uj (i, j = 1, 2). Эти векторы можно разложить по направлениям векторов T1, T2 и N : ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 12

Величины Гijk в (9) называются символами Кристоффеля второго рода. Они определяются через величины [[i, j, k]] (символы Кристоффеля первого рода) соотношениями ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 13

где по определению ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 14

Величины bij в (9) называются коэффициентами второй основной формы поверхности. Сравнивая (9) с (5), нетрудно видеть, что для поверхности bij играют такую же роль, как кривизна для плоских кривых: они описывают внешние свойства поверхности — непостижимые для воображаемого двумерного существа, живущего на поверхности, но доступные пониманию обычного трехмерного человека. Любой единичный вектор, касательный к поверхности, может быть записан в виде ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 15

где g11l1l1 + 2g12l1l2 + g22l2l2 = 1. Кривизна поверхности в направлении вектора l равна ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 16

За полуоборот вектора l кривизна k(l) изменяется и достигает в общем случае ровно одного максимального и одного минимального значения. Эти значения соответствуют двум положениям вектора l, находящимся под прямым углом друг к другу, а соответствующие значения k(l) называются главными кривизнами поверхности. Произведение главных кривизн называется полной (гауссовой) кривизной K поверхности, а их сумма — средней кривизной H. Эти величины определяются выражениями ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 17

и ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 18

Важную роль играют поверхности с постоянной гауссовой кривизной. При K = 0 поверхность плоская, или развертывающаяся, поскольку у нее такая же внутренняя геометрия, как у плоскости. Примерами развертывающихся поверхностей могут служить прямые круговые конусы и цилиндры. При K > 0 поверхность имеет эллиптическую неевклидову геометрию, а при K < 0 — гиперболическую неевклидову геометрию. Гаусс доказал замечательную теорему относительно кривизны K, утверждающую, что она может быть выражена через одни лишь внутренние величины, а именно через gij и их производные. Это следует из того, что определитель матрицы (bij) равен R1212, где ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 19

Величина (Rlijk) называется тензором кривизны поверхности.

Риманова геометрия. Обобщением и абстрактным вариантом только что описанной геометрии поверхности служит риманова геометрия. Она описывает n-мерное многообразие, на котором элемент длины дуги определяется формулой ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 20

в некоторой системе координат по аналогии с (8). На обычной поверхности определитель матрицы (gij) положителен, в римановой же геометрии предполагается лишь, что он отличен от нуля. Риманово пространство с римановой геометрией необязательно является подпространством пространства какой-нибудь более высокой размерности. Символы Кристоффеля и тензор кривизны определяются через gij, как и в описанном выше случае обычных поверхностей. Секционная кривизна K12 риманова пространства в точке P определяется через ориентацию, задаваемую двумя векторами l1 и l2: ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 21

Если она одинакова для всех векторов l1 и l2, то она постоянна и для всех точек P, и пространство называется пространством постоянной кривизны, скажем K, где ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 22

Свернутый тензор кривизны, определяемый выражением ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 23

играет важную роль в общей теории относительности Эйнштейна. Пространство, в котором Rik = mgij, называется пространством Эйнштейна. Дифференциальная геометрия в целом. Наиболее фундаментальная из известных взаимосвязей между топологией и дифференциальной геометрией устанавливается теоремой Гаусса — Бонне, которая утверждает, что для обычных замкнутых поверхностей ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ. Рис. 24

где интеграл берется по всей поверхности, K — гауссова кривизна и c — характеристика Эйлера — Пуанкаре. На произвольные замкнутые римановы пространства этот результат был распространен в 1943 К. Аллендерфером и А. Вейлем.

См. также

МАТЕМАТИЧЕСКИЙ АНАЛИЗ;

ТОПОЛОГИЯ.

ЛИТЕРАТУРА

Рашевский П.К. Курс дифференциальной геометрии. М., 1956 Погорелов А.В. Дифференциальная геометрия. М., 1969 Стернберг С. Лекции по дифференциальной геометрии. М., 1970

Источник: Энциклопедия Кольера на Gufo.me


Значения в других словарях

  1. Дифференциальная Геометрия — Раздел геометрии, в к-ром изучаются геометрич. образы, в первую очередь кривые и поверхности, методами математич. анализа. Обычно в Д. г. изучаются свойства кривых и поверхностей в малом, т. е. свойства сколь угодно малых их кусков. Кроме того, в Д. Математическая энциклопедия
  2. Дифференциальная геометрия — Раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и поверхностей. Большая советская энциклопедия
  3. дифференциальная геометрия — Радел математики, в котором исследуются свойства искривленных пространств; находит применение в космологии при исследовании геометрии Вселенной. Большой астрономический словарь
  4. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ, тип геометрии, в которой используются методы дифференциального ИСЧИСЛЕНИЯ для анализа геометрических понятий, таких как кривые и поверхности. Научно-технический словарь
  5. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел геометрии, в которой геометрические образы изучаются на основе метода координат средствами дифференциального исчисления. Большой энциклопедический словарь