спектральный анализ

СПЕКТРАЛЬНЫЙ АНАЛИЗ

метод качеств. и количеств. определения состава веществ, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи которых состоят в определении соотв. элементного и молекулярного состава вещества. Эмиссионный С. а. проводят по спектрам испускания атомов, ионов или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения анализируемыми объектами (см. абсорбционная спектроскопия). В зависимости от цели исследования, свойств анализируемого вещества, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метро-логич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Атомно-абсорбционный анализ, Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ, Молекулярная оптическая спектроскопия, Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия).

Часто под С.а. понимают только атомно-эмис-сионный спектральный анализ (АЭСА)-метод элементного анализа, основанный на изучении спектров испускания своб. атомов и ионов в газовой фазе в области длин волн 150–800 нм (см. атомные спектры).

Пробу исследуемого вещества вводят в источник излучения, где происходят ее испарение, диссоциация молекул и возбуждение образовавшихся атомов (ионов). Последние испускают характеристич. излучение, которое поступает в регистрирующее устройство спектрального прибора.

При качественном АЭСА спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого вещества. При количеств. анализе определяют количество (концентрацию) искомого элемента в анализируемом веществе по зависимости величины аналит. сигнала (плотность почернения или оптич. плотность аналит. линии на фотопластинке; световой поток на фотоэлектрич. приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, свойства фотопластинок и т. д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, которые по валовому составу и структуре возможно более близки к анализируемому веществу и содержат известные количества определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смеси веществ, растворы, в т. ч. и стандартные образцы, выпускаемые промышленностью. Для устранения влияния на результаты анализа неизбежного различия свойств анализируемого и стандартных образцов используют разные приемы; напр., сравнивают спектральные линии определяемого элемента и т. наз. элемента сравнения, близкого по хим. и физ. свойствам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, которые периодически корректируют по поверочным образцам.

Чувствительность и точность АЭСА зависят гл. обр. от физ. характеристик источников излучения (возбуждения спектров)-температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т. д. Для решения конкретной аналит. задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью разл. приемов — использование инертной атмосферы, наложение магн. поля, введение спец. веществ, стабилизирующих температуру разряда, степень ионизации атомов, диффузионные процессы на оптим. уровне и т. д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы мат. планирования экспериментов.

При анализе твердых веществ наиб. часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструир. стабилизир. генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью которых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая проба непосредственно может служить электродом дуги или искры; не проводящие ток твердые пробы и порошки помещают в углубления угольных электродов той или иной конфигурации. В этом случае осуществляют как полное испарение (распыление) анализируемого вещества, так и фракционное испарение последнего и возбуждение компонентов пробы в соответствии с их физ. и хим. свойствами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования испарения широко применяют добавки к анализируемому веществу реагентов, способствующих образованию в условиях высокотемпературной [(5–7)∙103 К] угольной дуги легколетучих соед. (фторидов, хлоридов, сульфидов и др.) определяемых элементов. Для анализа геол. проб в виде порошков широко применяют способ просыпки или вдувания проб в зону разряда угольной дуги.

При анализе металлургия, проб наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом катоде). Разработаны комбинир. автоматизир. источники, в которых для испарения или распыления используют лампы тлеющего разряда или электротермич. анализаторы, а для получения спектров, напр.,-высокочастотные плазматроны. При этом удается оптимизировать условия испарения и возбуждения определяемых элементов.

При анализе жидких проб (растворов) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной атмосфере, а также при пламенно-фотометрич. анализе (см. фотометрия пламени эмиссионная). Для стабилизации температуры плазмы разряда на оптимальном уровне вводят добавки легкоионизируемых веществ, напр. щелочных металлов. Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналит. сигнала к шуму и, т. обр., достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения пробы вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относит. стандартное отклонение составляет 0,01–0,03, что в ряде случаев позволяет применять АЭСА вместо точных, но более трудоемких и длительных хим. методов анализа.

Для анализа газовых смесей необходимы спец. вакуумные установки; спект-ры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием газовой хроматографии эти методы применяют редко.

спектральный анализ

Рис. 1. ВЧ плазматрон: 1 — факел отходящих газов; 2 — зона возбуждения спектров; 3 — зона поглощения ВЧ энергии; 4 — нагреват. индуктор; 5 — вход охлаждающега газа (азот, аргон); 6 — вход плазмообра-зующего газа (аргон); 7 — вход распыленной пробы (несущий газ-аргон).

При анализе веществ высокой чистоты, когда требуется определять элементы, содержание которых меньше 10−5-10 %, а также при анализе токсичных и радиоактивных веществ пробы предварительно обрабатывают; напр., частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем раствора или вносят в меньшую массу более удобного для анализа вещества. Для разделения компонентов пробы применяют фракционную отгонку основы (реже — примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. АЭСА с использованием перечисленных хим. способов концентрирования пробы, как правило, наз. химико-спектральным анализом. Дополнит. операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относит. стандартное отклонение достигает значений 0,2–0,3), но снижает пределы обнаружения в 10–100 раз.

Специфич. областью АЭСА является микроспектральный (локальный) анализ. При этом микрообъем вещества (глубина кратера от десятков мкм до неск. мкм) испаряют обычно лазерным импульсом, действующим на участок поверхности образца диаметром неск. десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании минералов, в металловедении.

Спектры регистрируют с помощью спектрографов и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия-для разделения спектральных линий с близкими длинами волн при анализе веществ с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракц. решетки (плоские, вогнутые, нарезные, голографич., профилированные), имеющие от неск. сотен до неск. тысяч штрихов на миллиметр, значительно реже — кварцевые или стеклянные призмы.

Спектрографы (рис. 2), регистрирующие спектры на спец. фотопластинках или (реже) на фотопленках, предпочтительнее при качественном АЭСА, т. к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количеств. анализа вследствие сравнит. дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на фотопластинках измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматич. режим измерений, обработку их результатов и выдачу конечных результатов анализа.

спектральный анализ. Рис. 2

Рис. 2. Оптическая схема спектрографа: 1 — входная щель; 2 — поворотное зеркало; 3 — сферич. зеркало; 4 — дифракц. решетка; 5 — лампочка освещения шкалы; 6 — шкала; 7 — фотопластинка.

спектральный анализ. Рис. 3

Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2 — дифракц. решетки; 3 — выходные щели; 4 — ФЭУ; 5 — входные щели; 6 — штативы с источниками света; 7 — генераторы искрового и дугового разрядов; 8 — электронно-регистрирующее устройство; 9 — управляющий вычислит. комплекс.

В спектрометрах осуществляется фотоэлектрич. регистрация аналит. сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматич. обработкой данных на ЭВМ. Фотоэлектрич. многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналит. линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиб. интенсивные аналит. линии которых расположены в УФ области спектра при длинах волн меньше 180–200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значит. мере процедурами подготовки исходного вещества к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиб. длительных этапов — растворения, приведения растворов к стандартному составу, окисления металлов, растирания и смешения порошков, отбора проб заданной массы. Во мн. случаях многоэлементный АЭСА выполняется в течение неск. минут, напр.: при анализе растворов с использованием автомати-зир. фотоэлектрич. спектрометров с ВЧ плазматронами или при анализе металлов в процессе плавки с автоматич. подачей проб в источник излучения.

В черной и цветной металлургии распространены экспрессные полуколичественные (относит. стандартное отклонение 0,3–0,5 и более) методики определения содержания основных или наиб. характерных компонентов сплавов, напр. при их маркировке, при сортировке металлолома для его утилизации и т. д. Для этого применяют простые, компактные и дешевые визуальные и фотоэлектрич. приборы (стило-скопы и стилометры) в сочетании с искровыми генераторами. Диапазон определяемых содержаний элементов — от неск. десятых долей процента до десятков процентов.

спектральный анализ. Рис. 4

АЭСА применяют в научных исследованиях; с его помощью открывали хим. элементы, исследуют археологич. объекты, устанавливают состав небесных тел и т. д. АЭСА широко применяется также для контроля технол. процессов (в частности, для установления состава исходного сырья, технол. и готовых продуктов), исследования объектов окружающей среды и др. С помощью АЭСА можно определять практически все элементы периодич. системы в весьма широком диапазоне содержаний — от 10−7% (пкг/мл) до десятков процентов (мг/мл). Достоинства АЭСА: возможность одновременного определения в малой навеске вещества большого числа элементов (до 40 и более) с достаточно высокой точностью (см. табл.), универсальность методич. приемов при анализе разл. веществ, экспрессность, сравнительная простота, доступность и дешевизна аппаратуры.

Высокий уровень автоматизации АЭСА позволяет включать этот метод в автоматизир. системы аналит. контроля и управления технологией производства.

Лит.: Зайдель А.Н., Основы спектрального анализа, М., 1965; Спектральный анализ чистых веществ, под ред. Х. И. Зильберштейна, Л., 1971; Русанов А.К., Основы количественного спектрального анализа руд и минералов, 2 изд., М., 1978; Терек Т., Мика Й., Гегуш Э., Эмиссионный спектральный анализ, пер. с англ., ч. 1–2, М., 1982; Высокочастотный индуктивно-связанный плазменный разряд в эмиссионном спектральном анализе, под ред. Х.И. Зильберштейна, Л., 1987; Кузяков Ю.Я., Семененко К.А., Зо-ров Н.Б., Методы спектрального анализа, М., 1990.

Ю. И. Коровин

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. СПЕКТРАЛЬНЫЙ АНАЛИЗ — Физич. методы качеств. .и количеств. определения состава в-ва, основанные на получении и исследовании его спектров. Основа С. а. — спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров. Атомный С. Физический энциклопедический словарь
  2. Спектральный анализ — I Спектра́льный ана́лиз физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. Большая советская энциклопедия
  3. Спектральный Анализ — Исследование спектральных характеристик линейных операторов: геометрии спектра и его основных частей, спектральной кратности, асимптотики собственных значений и т. Математическая энциклопедия
  4. Спектральный анализ — В экспертных исследованиях физический метод определения качественного и количественного состава вещества, проводимый по его оптическим спектрам. Различают атомный и молекулярный С.а., эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения) С.а. Криминалистическая энциклопедия
  5. Спектральный анализ — (a. spectrum analysis; н. Spektralanalyse; ф. analyse spectrale, analyse spectrographique; и. analisis espectroscopica) — физ. метод определения хим. Горная энциклопедия
  6. СПЕКТРАЛЬНЫЙ АНАЛИЗ — СПЕКТРАЛЬНЫЙ АНАЛИЗ — физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Большой энциклопедический словарь
  7. Спектральный анализ — Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяние призмы и решетки. — II. Спектроскопы. Коленчатый и прямой спектроскоп à vision directe. Энциклопедический словарь Брокгауза и Ефрона