минерал

МИНЕРАЛ (от позднелат. minera — руда)

прир. твердое тело с характерными хим. составом, кристаллич. структурой и свойствами. Образуется в результате физ. и хим. процессов (экзогенных, эндогенных и метаморфических; см. полезные ископаемые) в глубинах и на поверхности Земли, Луны, др. планет и космич. тел. М. — составная часть горных пород, руд и метеоритов. Как исключение к М. относят жидкую ртуть и прир. амальгамы, аморфные опал и аллофан (водный силикат алюминия). Выделяют также метамиктные М., которые утратили кристаллич. строение в результате радиоактивного распада. М., как правило, — неорг. вещества, но иногда к ним относят кристаллич. орг. соединения (в частности, окса-латы), некоторые твердые углеводороды и ископаемые смолы (компоненты янтаря). Воду, в отличие от льда, обычно не считают М. По мнению В. И. Вернадского, однако, М. являются не только твердые прир. образования, но также жидкости и газы.

Понятие М. употребляют для обозначения минеральных индивида, вида и разновидности. Минер. индивиды-отдельные кристаллы или кристаллич. зерна. Их размеры варьируют от 1–100 нм (коллоидные М.) до неск. м. Минер. вид-совокупность минер. индивидов однотипной структуры, хим. состав которых может изменяться в определенных пределах без изменения структуры. М. одинакового состава, но разной структуры-полиморфные модификации (напр., алмаз и графит, кальцит и арагонит) — относят к разным минер. видам. Непрерывные ряды твердых растворов (изоморфные смеси) условно делят на неск. минер. видов. Так, в двухкомпонентных твердых растворах выделяют обычно три минер. вида (с содержанием одного из компонентов 100–75, 75–25 и 25–0 мол. или ат. %), реже два (0–50 и 50–100 мол. или ат. %), а в трехкомпонентных-семь или три. Минер. разновидность выделяют внутри минер. вида по особенностям структуры, состава, морфологии и свойств. Известно ок. 3000 минер. видов и почти столько же разновидностей.

Называют М. по составу, месту находки, особенностям морфологии, характерному свойству, в честь ученых, путешественников, космонавтов, политич. деятелей и т. д.

Структура. Структурными единицами в узлах кристаллич. решетки м. б. атомы (как, напр., в алмазе), ионы (напр., Na+, UO22+, NH+4, H3O+ , Cl, CO32−, PO43−), а также молекулы (S8 в сере, As4S4. в реальгаре). Они удерживаются в структуре благодаря ионной, ковалентной, металлич. и водородной связям, а также ван-дер-ваальсовым взаимодействиям. В т. наз. гомо(изо)десмич. структурах имеется только один тип связи (ковалентная в алмазе, ионная в галите, металлическая в золоте); но гораздо чаще встречаются гетеро(анизо)десмич. структуры с неск. типами связи. Пространств. расположение структурных единиц, связанных наиб. прочными связями, определяет геом. "мотив" структуры: островной (в т. ч. кольцевой), цепочечный, ленточный, слоистый, каркасный, координационный. В структуре каждого М. выделяют элементарную ячейку с соответствующей симметрией и параметрами (см. кристаллы).

Реальная структура М. отличается от идеальной наличием дефектов (вакансии в отдельных узлах кристаллич. решетки, примесные атомы или ионы в узлах или между узлами, изменение валентности у части ионов) и дислокаций. Упорядочение вакансий может приводить к увеличению одного из параметров элементарной ячейки. Для слоистых М. (слюды, графит, молибденит и др.) характерна политипия, при которой происходит небольшой сдвиг слоев (пакетов) относительно друг друга с изменением периодичности в их чередовании. В результате разл. политипы одного М. отличаются друг от друга параметрами вдоль одной из осей (причем эти параметры кратны одной и той же величине). При этом может происходить изменение вида симметрии элементарной ячейки вплоть до изменения сингонии. Однако существ. перестройки структуры, как при полиморфизме, не происходит.

Кроме того, атомы или ионы в некоторых М. могут распределяться по узлам кристаллич. решетки закономерно или статистически; соответственно различают упорядоченные и неупорядоченные структуры.

Химический состав и формулы. В состав М. входят все стабильные и долгоживущие изотопы элементов периодич. системы, кроме инертных газов (хотя Ar и Не могут накапливаться в М. как продукты радиоактивного распада). Различают видообразующие элементы и элементы-примеси, содержание которых в М. составляет соотв. единицы-десятки и единицы-доли процента по массе. К последним обычно относят редкие и рассеянные элементы: Rb, Cs, Ra, Sc, Ga, In, Tl, Ge, Hf, Th, РЗЭ, Re, I, Br и др., которые, как правило, не образуют самостоятельных М. Примеси м. б. структурными (изоморфными) или механическими (адсорбир. элементы и соед., газово-жидкие микровключения, микроскопич. и суб-микроскопич. включения др. М.), что связано с условиями образования М. и с особенностями его кристаллич. структуры.

По числу (один, два или больше) видообразующих элементов среди М. выделяют соотв. простые вещества, бинарные и более сложные соединения. Бинарные соед. преобладают среди интерметаллидов (напр., Au2Bi, Pd3Sn, Pt3Fe), карбидов, нитридов, силицидов (Fe3C, FeSi, CrN), характерны для некоторых халькогенидов (PbS, NiSe, Bi2Te3, NiAs, FeSb2), простых оксидов (MgO, Fe2O3, Al2O3, SiO2), галогенидов (NaCl, KCl, MgF2, CaF2). К более сложным соед. относятся некоторые интерметаллиды (Au8PbTe, CuPt2Fe), карбиды и фосфиды (Fe2NiP, Fe20Ni3C), большая часть халькогенидов (Cu5FeS4, CoAsS, Ag3SbS3), гидроксиды и сложные оксиды (AlOOH, FeCr2O4), все соли кислородсодержащих кислот {Cas [PO4]3(F, Cl, ОН)}, часть галогенидов (NH4Cl, KMgCl3∙6H2O) и все т. наз. галогеносоли (Na[BF4], Na3 [AlF6]). Характерная особенность силикатов, боратов и ванадатов — наличие полимерных анионов, В силикатах в строении анионного радикала принимают участие (кроме Si и О) Al, В и Be.

Состав некоторых М. относительно постоянен (кварц, гематит и др.), однако большинство М. имеют переменный состав, как, напр., члены изоморфных рядов в двух-, трех- и многокомпонентных системах.

Состав М. выражается хим. формулой. Эмпирич. формула отражает соотношения входящих в состав М. элементов, которые располагаются в ней слева направо по мере увеличения номера группы в периодич. системе, а для элементов одной группы-по мере уменьшения их порядковых номеров, напр. кобальтин CoAsS, сподумен Li2O • Al2O3 ∙ 4SiO2. К р и с т а л л о х и м. формула отражает связь состава со структурой. Она записывается по определенным правилам: сначала катионы; затем анионы, при этом комплексные анионы заключают в квадратные скобки; после аниона т. наз. дополнит. анионы (F, Cl, OH, О2−); молекулы воды обычно записываются в конце формулы; изоморфные элементы ставят в круглые скобки через запятую. Можно указать мотив полимерного аниона: цепочечный или ленточный (минерал), слоистый (минерал. Рис. 2), каркасный (минерал. Рис. 3 ). Например, кристаллохим. формула кобальтина имеет вид Co[AsS], сподумена-минерал. Рис. 4 , талька-Mg3минерал. Рис. 5(OH)2, альбита-минерал. Рис. 6. Степень окисления указывают справа вверху от символа элемента, а координац. число-слева вверху в круглых скобках, напр.: магнетит Fe2+Fe23+ O4, андалузит (6)Al(5)Al [SiO4] О. Формулы М., для которых характерны разнообразные изоморфные замещения, записывают в обобщенном виде, напр. блеклые руды М+10М22+ [Y4X13], где М+ -Cu, Ag; M2+ -Fe, Zn, Cu, Hg, Cd, Mn; Y-As, Sb, Bi, Те; X-S, Se.

В составе М. может присутствовать вода: связанная, или конституционная, в ионизир. виде (OH, H3O+); кристаллизационная в виде молекул H2O, количество которых в элементарной ячейке постоянно, и свободная (адсорбированная, капиллярная, межслоевая и др.), количество которой непостоянно, что обозначается n∙H2O или aq. M. может содержать одновременно неск. типов воды, что отражается в кристаллохим. формулах, напр.: гипс Ca [SO4]•2H2O, гидромусковит (К, H3O+) Al2 [AlSi3O10] (OH)2nH2O.

Реальный состав М. всегда отличается от идеальной формулы минер. вида. Так, формула минер. вида сфалерита-ZnS, а в результате хим. анализа конкретного образца сфалерита м. б. получена, напр., такая формула: (Zn0,70Fe0,15Mn0,10Cd0,03In0,02)S.

Классификация. Общепринятой классификации М. нет. Наиб. рациональной классификацией минер. видов считают кристаллохимическую, которая в равной степени учитывает хим. состав и структурные особенности М. и позволяет выявлять взаимосвязи между составом, кристаллич. структурой, свойствами и морфологией (см. ниже) М. Так, иногда М. подразделяют по составу на шесть типов: самородные элементы (простые вещества), интерметаллиды, карбиды и им подобные, халькогениды, кислородные соед., галогенные соединения. В трех последних типах характер аниона (простой или комплексный) служит основанием для выделения соответствующих подтипов, а конкретный состав аниона-для выделения классов (см. табл.).

КЛАССИФИКАЦИЯ МИНЕРАЛОВ

минерал. Рис. 7

Морфология (формы выделения). М. часто образуют кристаллы определенной формы, свойственной данному минер. виду. Облик их м. б. изометрический, удлиненный (столбчатый, игольчатый и др.) или уплощенный (таблитчатый, чешуйчатый и др.). Нередко кристаллы закономерно срастаются в виде двойников, тройников, четверников, шестсрни-ков. Незакономерные сростки кристаллов и кристаллич. зерен образуют минер. агрегаты (друзы, щетки, сферолиты, оолиты и др.). Морфология кристаллов и агрегатов дает информацию об условиях образования М. и используется при их диагностике.

Свойства М. обусловлены их кристаллич. структурой и хим. составом. Они являются основой диагностики М., учитываются при поисках в разведке полезных ископаемых, при обогащении и комплексной переработке руд и применении М. Мех. свойства включают твердость, хрупкость, ковкость, спайность, отдельность, излом, гибкость (сопротивление излому), упругость. Под твердостью понимают степень сопротивления М. к.-л. воздействию. Для определения относит. твердости М. используют шкалу Мооса, составленную из 10 эталонов-минералов с условной твердостью от 1 до 10: 1-тальк, 2-гипс, 3-кальцит, 4-флюорит, 5-апатит, 6-ортоклаз, 7-кварц, 8-топаз, 9-корунд, 10-алмаз (расположены в порядке возрастания твердости). Этими минералами царапают поверхность исследуемого М. Т. наз. микротвердость (кгс/мм2) рассчитывают по величине углубления, полученного в стандартных условиях при вдавливании в М. алмазной пирамидки на спец. приборе-микротвердомере. Твердость М. зависит гл. обр. от его кристаллич. структуры, типа и прочности хим. связей. С твердостью М. связаны их хрупкость и ковкость. Спайность М.-это способность раскалываться при ударе по определенным направлениям с образованием плоских поверхностей. Спайность зависит от типа кристаллич. решетки, прочности связей и их пространств. распределения в структуре и, в зависимости от геом. типа структуры, может проявляться в одном, двух, трех и более направлениях. Отдельность подобна спайности, но обусловлена двойникованием, ориентированным замещением другими М., воздействием одностороннего давления. Излом (ступенчатый, занозистый, раковистый, неровный) характеризует поверхность обломков, на которые раскалывается М. (не по спайности) при ударе. Упругие свойства оценивают по характеру деформации М. при воздействии на него мех. напряжения (см. реология).

О п т и ч. с веществ а М. включают преломление, отражение и поглощение света, блеск, цвет, люминесценцию. Они также связаны с составом и структурой М. Преломление света наблюдается у прозрачных М. (кислородные и галогенные соед.) и характеризуется показателем преломления п. Отражение света наблюдается в большей степени у непрозрачных и полупрозрачных М. (металлы, интерметаллиды, халькогениды, оксиды и гидроксиды) и характеризуется коэф. отражения R. По величинам n и R диагностируют М. под микроскопом в проходящем или отраженном свете. Свето-поглощение (оптич. плотность) характеризует как прозрачные (алмаз, горный хрусталь), так и полупрозрачные (сфалерит, сера) и непрозрачные (магнетит, золото) М. Блеск М., наблюдаемый визуально,-одна из форм светоот-ражения. Он бывает металлическим, полуметаллическим, алмазным, стеклянным, жирным, матовым и др. Цвет М. объясняется частичным поглощением видимого света и обусловлен присутствием в структуре ионов-хромофоров в качестве видообразующих элементов или изоморфных примесей, а также структурными дефектами, газово-жидкими включениями и микроскопич. включениями окрашенных М. Некоторые М. способны люминесцировать при облучении, нагревании, раскалывании, в результате трения.

Э л е к т р и ч. с веществ а выявляются у М. при воздействии на них электркч. поля, в некоторых случаях — при нагр. или мех. деформации. По величине электропроводности М. делят на проводники (металлы, интерметаллиды), полупроводники (мн. халькогениды) и диэлектрики (кислородные и галогенные соед.). Диэлектрики не проводят электрич. тока, но на поверхности некоторых из них могут возникать электрич. заряды в результате нагревания (пироэлектричество, напр., в турмалине), давления, сжатия, растяжения (пьезоэлектричество в кварце) и трения (трибоэлектричество).

М а г н. с веществ а проявляются у М. в магн. поле. Они связаны с магн. моментами атомов и особенностями структуры М. По величине магн. восприимчивости М. подразделяют на диамагнетики, парамагнетики и ферромагнетики. По степени упорядоченности магн. моментов парамагнетики и ферромагнетики подразделяют на антиферромагнетики (напр., ильменит, гематит), ферромагнетики (самородное железо) и ферримагнетики (магнетит, пирротин). По плотности (г/см3) М. делят на легкие (до 2,5), средние (2,5–4), тяжелые (4–8) и весьма тяжелые (> 8,0). Плотность зависит от атомных масс слагающих кристаллич. решетку атомов и ее геом. типа. Наиб. плотность (от 8 до 23 г/см3) имеют самородные металлы. Некоторые М. обладают радиоактивностью.

Диагностика и методы изучения. Предварит. диагностика М. основывается на изучении морфологии и физ. свойств М., наблюдаемых визуально. Иногда дополнительно изучают люминесцентные, радиоактивные и магн. свойства М.,

растворимость их в воде и соляной кислоте. О составе М. судят по характерным хим. реакциям и по цвету пламени газовой горелки при внесении в него образца. Точная диагностика М. осуществляется в лаб. условиях чаще всего оптическими (в поляризац. микроскопе) и рентгеновскими (напр., на дифрактометре) методами. Элементный состав М. определяют методами спектрального, атомно-абсорбц. анализа, лазерного спектрального микроанализа. Электронно-зондо-вые методы позволяют определять состав микроколичеств М. и устанавливать неоднородность и природу примесей без разрушения образца. Примеси в М. изучают также с помощью электронной микроскопии и ЭПР. Электронное строение М. исследуют методами ЭПР, ЯМР и мёссбауэ-ровской спектроскопии. Тип воды в М. определяют методами термич. анализа, спектроскопии ИК и ЯМР. Явления структурной упорядоченности и политипии М. изучают методами рентгенографии, электронографии, спектроскопии ЯМР. Электронная микроскопия в сочетании с электронографией эффективны при исследовании тонкодисперсных М.

Применение. М. служат источниками для получения металлов и др. хим. элементов, а также хим. соединений. Их используют как абразивные и огнеупорные материалы, применяют в керамике, оптике, радиоэлектронике, электро- и радиотехнике. Некоторые М. являются драгоценными и поделочными камнями. Свойства М. лежат в основе поиска и разведки полезных ископаемых, методов сепарации и обогащения руд. В широких масштабах в промышленности получают синтетические М. для радиоэлектроники, оптики, абразивной и ювелирной промышленности.

Лит.: Поваренных А. С., Кристаллохимическая классификация минеральных видов, К., 1966; Булах А. Г., Руководство и таблицы для расчета формул минералов, 2 изд., М., 1967; Годовиков А. А., Введение в минералогию, Новосибирск, 1973; Марфунин А. С., Введение в физику минералов, М., 1974; Минералогические таблицы, Справочник, под ред. Е.И.Семенова, М., 1981; Годовиков А. А., Минералогия, 2 изд., М., 1983.

Р. А. Виноградова

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. минерал — -а, м. Природное тело, приблизительно однородное по химическому составу и физическим свойствам, входящее в состав горных пород, руд, метеоритов. Малый академический словарь
  2. минерал — Твёрдое природное тело, однородное по химическому составу, кристаллической структуре и физическим свойствам, которое образуется в результате физико-химических процессов на поверхности или в глубинах Земли либо других космических тел. География. Современная энциклопедия
  3. минерал — Минера́л/. Морфемно-орфографический словарь
  4. Минерал — (франц. minéral, от позднелат. minera — руда) природное тело, приблизительно однородное по химическому составу и физическим свойствам, образующееся в результате физико-химических процессов на поверхности или в глубинах Земли (и других космических тел)... Большая советская энциклопедия
  5. минерал — орф. минерал, -а Орфографический словарь Лопатина
  6. минерал — Содержащийся в породах природный материал, состоящий из одного химического вещества. Большой астрономический словарь
  7. минерал — МИНЕРАЛ а, м. minéral m., нем. Mineral <�ср.-лат. ( aes) minerale (медная) руда. Природное химическое соединение или элемент твердого, жидкого или газообразного состояния, являющийся обычно частью горных пород и руд, напр. уголь, кварц, нефть и т. Словарь галлицизмов русского языка
  8. минерал — минерал , -а Орфографический словарь. Одно Н или два?
  9. минерал — Заимств. в XVIII в. из франц. яз., где minéral < ср.-лат. minerale «минерал» < «(полезное) ископаемое» (от mine «шахта»). Этимологический словарь Шанского
  10. МИНЕРАЛ — МИНЕРАЛ, образовавшиеся в естественных условиях химические элементы или соединения, имеющие определенный химический состав и обычно характерную для каждого из них кристаллическую форму. Научно-технический словарь
  11. Минерал — (от cp.-век. лат. minera — руда * a. mineral; н. Mineral; ф. mineraux; и. minerales) — физически и химически индивидуализированное, как правило, твёрдое тело, относительно однородное по составу и свойствам, возникшее как продукт природных физ.-хим. Горная энциклопедия
  12. минерал — МИНЕРАЛ -а; м. [от лат. minera — руда] Природное вещество, приблизительно однородное по химическому составу и физическим свойствам, входящее в состав горных пород, руд, метеоритов. Полезные минералы. Коллекция минералов. Образование минералов. Обработка минералов. Твёрдый м. ◁ Минеральный (см.). Толковый словарь Кузнецова
  13. минерал — МИНЕРАЛ, а, м. Естественное неорганическое образование кристаллической структуры, приблизительно однородное по химическому составу и физическим свойствам... Толковый словарь Ожегова
  14. минерал — Минерала, м. [от латин. minera – руда]. Естественное химическое соединение, неорганическое тело, твердое или жидкое, входящее в состав земной оболочки и часто служащее предметом добычи и обработки, как полезное ископаемое, как напр. уголь, руда, нефть и т.п. Большой словарь иностранных слов
  15. минерал — МИНЕР’АЛ, минерала, ·муж. (от ·лат. minera — руда). Естественное химическое соединение, неорганическое тело, твердое или жидкое, входящее в состав земной оболочки и часто служащее предметом добычи и обработки, как полезное ископаемое, как напр. уголь, руда, нефть и т.п. Толковый словарь Ушакова
  16. Минерал — (от mina — подземный ход, штольня). — Это название дают однородным твердым или жидким неорганическим произведениям природы, определенного химического состава, входящим в состав твердой оболочки Земли, а также и других небесных тел [Таковы метеориты.]. Энциклопедический словарь Брокгауза и Ефрона
  17. минерал — минера́л начиная с Петра I; см. Смирнов 196. Через нем. Мinеrаl (с ХVI в.; см. Шульц–Баслер 2, 116) или франц. minéral из ср.-лат. (аеs) minerāle. Польск. посредничество, судя по месту ударения, невероятно, вопреки Смирнову (там же). Этимологический словарь Макса Фасмера
  18. МИНЕРАЛ — МИНЕРАЛ (от ср.-век. лат. minera — руда) — природное тело, приблизительно однородное по химическому составу и физическим свойствам, образующееся в результате физико-химических процессов в глубинах и на поверхности Земли. Известно ок. 3 тыс. Большой энциклопедический словарь
  19. минерал — минерал м. Естественное неорганическое образование кристаллической структуры, приблизительно однородное по химическому составу и физическим свойствам, залегающее в глубинах или на поверхности Земли и обычно служащее предметом добычи как полезное ископаемое. Толковый словарь Ефремовой
  20. минерал — МИНЕРАЛ м. ископаемое, горная или каменная порода, все, что принадлежит к минеральному, горному, ископаемому, безорудному царству, что входит в состав земной толщи. Толковый словарь Даля