мембранный катализ

МЕМБРАННЫЙ КАТАЛИЗ

основан на избират. переносе через катализатор, как через мембрану, одного из веществ, участвующих в реакции. Мембраной (мембранным катализатором) может служить сам катализатор или к.-л. материал с нанесенным на него каталитически активным веществом.

В М.к. используют монолитные мембранные катализаторы, состоящие из металла или его сплава и не имеющие сквозных пор, а также пористые и композиционные катализаторы. Монолитные мембранные катализаторы (ММК) обычно представляют собой металлич. фольгу или тонкостенную трубку. Для реакций с участием H2 ММК служат Pd и его сплавы, с участием O2-Ag. При этом водород или кислород, пропускаемые с одной стороны ММК, проникают через катализатор в атомарной форме, активной для присоединения к молекулам, адсорбированным на противоположной поверхности катализатора. В результате этого увеличивается общая скорость реакций, возрастает селективность катализатора в реакциях образования продуктов неполного гидрирования или окисления. Например, на ММК из Pd-сплава селективно происходит гидрирование циклопентадиена в циклопентен (выход 98%), а на катализаторах из Ag-окисление спиртов в альдегиды. Высокая селективность реакции обусловлена также тем, что степень заполнения поверхности катализатора субстратом не зависит от степени заполнения ее газом, поступающим через катализатор. При дегидрировании и дегидроциклизации удаление из зоны реакции образующегося H2, благодаря его диффузии через мембрану, подавляет обратные и побочные процессы. Так, на ММК из сплава Pd (15%) и Rh (85%) 1,2-циклогександиол дегидрируется в пирокатехин с выходом 95% без образования, в отличие от реакции на обычном катализаторе, побочного продукта — фенола.

На ММК возможен также М.к. с переносом водорода и азота в виде атомов через мембрану из Fe; на противоположной поверхности они соединяются в молекулы NH3, концентрация которых намного превосходит равновесную для реакции молекулярных H2 и N2 в тех же условиях.

П о р и с т ы е мембранные катализаторы (ПМК) обычно представляют собой пористые пластины или трубки, у которых поверхностный слой или весь объем каталитически активен. В отличие от монолитных катализаторов, они не обеспечивают подведения атомарного реагента в зону реакции, но позволяют подавать большие количества газообразного реагента или более равномерно распределять его в жидком. Так, ПМК используют при гидрировании хлопкового масла, ожижении угольной пасты и др. Положит. особенности монолитных и пористых катализаторов сочетаются при создании композиционных мембранных катализаторов (КМК). Они обычно состоят из пористого, механически прочного листа каталитически неактивного вещества и тонкой, но сплошной пленки активного вещества. Для формирования последней может потребоваться промежут. непористый слой, и тогда катализатор становится трехслойным, как, напр., металлокерамич. лист, покрытый слоем термостойкого и газопроницаемого полимера с нанесенным на него слоем Pd или его сплава (толщиной до 10 мкм). КМК содержат гораздо меньше металла на единицу поверхности, чем монолитные, более устойчивы, проницаемы для H2 при более низких температурах, что позволяет гидрировать термически нестойкие вещества.

Преимущество М.к. перед обычным обусловлено также избират. переносом энергии, необходимой для реакции. Если реакция на одной из поверхностей катализатора сопровождается уменьшением энергии Гиббса системы, то на др. поверхности становится возможной реакция с возрастанием энергии Гиббса. Кроме того, перенос тепла, которое выделяется при экзотермич. присоединении H2, протекающем на одной поверхности катализатора, облегчает проведение на др. его стороне сопряженной эндотермич. реакции дегидрирования без сложных теплообменных устройств. Так, сопряжение дегидрирования нафтенов или олефинов с гидродеалкилированием гомологов бензола на ММК повышает скорости обеих реакций и выходы целевых продуктов по сравнению с теми, которые наблюдаются при раздельном их осуществлении. При дегидрировании изопропанола, сопряженном с гидрированием циклопентадиена на ММК из сплава Pd-Ru, на др. сторону мембраны переносится в 2,5 раза больше H2, чем при проведении отдельной реакции дегидрирования.

М.к. дает возможность перейти к непрерывным, малостадийным процессам при производстве хим. реактивов, душистых веществ, лек. препаратов и др. продуктов высокой чистоты. При этом устраняются потери драгоценных металлов из катализаторов, уменьшается число технол. операций и количество отходов, отпадает необходимость в реакторах высокого давления. Для гидрирования вместо дорогого электролитич. водорода м. б. использованы газы хим. и нефтеперерабатывающей промышленности, богатые водородом.

По механизму М.к. происходят важнейшие процессы метаболизма на ферментах, закрепленных в биомембранах с избират. проницаемостью.

Лит.: Грязное В.М., "Докл. АН СССР", 1969, т. 189, №4, с. 794–96; Грязное В. М., Смирнов В. С., "Успехи химии", 1974, т. 43, в. 10, с. 1716–38; Металлы и сплавы как мембранные катализаторы, М., 1981; Грязное В.М., в кн.: Физическая химия. Современные проблемы, М., 1982, с. 96–133; его же, в кн.: Благородные металлы, М., 1984, с. 491–505; Мембранные катализаторы, проницаемые для водорода и кислорода, М., 1985; Gryaznov V. М., "Z. Phys. Chem. Neue Folge", 1986, Bd 147, S. 123–132.

В. М. Грязнов

Источник: Химическая энциклопедия на Gufo.me