жидкие кристаллы

ЖИДКИЕ КРИСТАЛЛЫ

вещества, переходящие при определенных условиях (температура, давление, концентрация в растворе) в жидкокристаллич. состояние, которое является промежуточным между кристаллич. состоянием и жидкостью. Как и обычные жидкости, Ж. к. обладают текучестью, но при этом для них характерно спонтанное появление анизотропии свойств (оптич., электрич., магнитных и др.) при отсутствии трехмерного дальнего порядка в расположении частиц (атомов, молекул). Поэтому жидкокристаллич. состояние часто наз. также мезоморфным (мезофазой). На диаграмме состояния температурный интервал существования Ж. к. ограничен температурой плавления твердых кристаллов и т. наз. температурой просветления, при которой жидкокристаллич. мутные образцы становятся прозрачными вследствие плавления мезофазы и превращения ее в изотропную жидкость. Молекулы жидкокристаллич. соед. обладают стержнеобразной или дискообразной формой и имеют тенденцию располагаться преим. параллельно друг другу. Т. наз. термотропные Ж. к. образуются при термич. воздействии на вещество. Такие Ж. к. образуют, напр., производные ароматич. соед., содержащие чередующиеся линейные и циклич. группировки (бензольные кольца). Жидкокристаллич. фаза образуется чаще всего в том случае, если заместители в молекуле располагаются в пара-положении. Большое количество термотропных жидкокристаллич. соед. м. б. изображено общей формулой:

жидкие кристаллы

X обычно —CH=N—, -CH2—CH2—, -НC=CН—, жидкие кристаллы. Рис. 2, —C(O)—NH—. Концевыми группами Y и Z м. б. алкильные и алкоксильные группировки, галогены, циано-, нитро- и аминогруппы и др. Примеры некоторых Ж. к. приведены в таблице. Часто жесткие фрагменты молекул, напр., циклич. группировки, определяющие существование мезофазы, наз. "мезогенными". Наличие разветвлений в молекулах приводит к сужению температурного интервала существования мезофазы.

жидкие кристаллы. Рис. 3

K — твердое кристаллич. состояние, I — изотропная жидкость (расплав), N — нематики, S(SA, SB, SF — смектики, D — дискотики, Ch — холестерики.

Лиотропные Ж. к. образуются при растворении некоторых веществ в определенных растворителях. Например, водные растворы мыл, полипептидов, липидов, белков, ДНК и др. образуют Ж. к. в определенном интервале концентраций и температур. Структурными единицами лиотропных Ж. к. являются надмолекулярные образования разл. типов, распределенные в среде растворителя и имеющие цилиндрич., сферич. или др. форму. В зависимости от характера расположения стержнеобразных молекул различают три осн. типа Ж. к. — смектический, нематический и холестерический. В смектич. Ж. к. (их наз. смектиками, обозначают S) молекулы располагаются в слоях. Центры тяжести удлиненных молекул находятся в равноотстоящих друг от друга плоскостях и подвижны в двух измерениях (на смектич. плоскости). Длинные оси молекул могут располагаться как перпендикулярно к плоскости смектич. слоя (ортогональные смектики, рис. 1,а), так и под некоторым углом к слою (наклонные смектики, рис. 1,б).

жидкие кристаллы. Рис. 4

Рис. 1. Структура смектических (а и б) и нематических (в) жидких кристаллов (а — ортогональное, б — наклонное расположение молекул).

Кроме того, возможно упорядоченное и неупорядоченное расположение молекул в самих слоях. Все это обусловливает возможности образования разл. полиморфных модификаций. Известно св. десятка полиморфных смектич. модификаций, обозначаемых буквами латинского алфавита, смектики А, В, С и т. д. (или SА, SВ, SC и т. д.). Формирование смектич. фаз характерно для жидкокристаллич. соед., молекулы которых содержат длинные концевые алкильные или алкоксильные группы Y и Z с числом атомов углерода / 4–6. Нематич. Ж. к. (нематики N) характеризуются наличием ориентационного порядка, при котором длинные оси молекул расположены однонаправленно при беспорядочном расположении центров тяжести молекул (рис. 1,в). Нематич. тип Ж. к. образуют соед., в молекулах которых имеются короткие алкильные или алкоксильные группы (число атомов углерода [ 3).

жидкие кристаллы. Рис. 5

Рис. 2. Структура холестерических жидких кристаллов; пунктиром изображен шаг спирали; стрелки указывают направление длинных осей молекул.

Холестерич. тип мезофазы (холестерики Сhоl) образуется двумя группами соед.: производными оптически активных стероидов, гл. обр. холестерина (отсюда назв.), и нестероидными соед., принадлежащими к тем же классам соед., которые образуют нематич. Ж. к., но обладающими хиральностью (алкил-, алкокси-, ацилоксизамещенные азометины, производные коричной кислоты, азо- и азоксисоединения и др.). В холестерич. Ж. к. молекулы расположены так же, как в нематических, но в каждом слое молекулы повернуты относительно их расположения в соседнем слое на определенный угол. В целом реализуется структура, описываемая спиралью (рис. 2). Вещества с дискообразными молекулами (дискотики D) могут образовывать Ж. к., в которых молекулы упакованы в колонки (имеется дальний порядок в ориентации плоскостей дискообразных молекул) или расположены так же, как в нематиках (дальний порядок отсутствует) (рис. 3, а и б). Своеобразная структура жидкокристаллич. соед., обеспечивающая сочетание упорядоченности в расположении молекул с их высокой подвижностью, определяет широкие области практич. использования Ж. к. Направление преимуществ. ориентации молекул, характеризуемое аксиальным единичным вектором, или директором, может легко изменяться под воздействием разл. внеш. факторов — температуры, мех. напряжений, напряженности электрич. и магн. полей.

жидкие кристаллы. Рис. 6

Рис. 3. Структура дискотических жидких кристаллов: а — колончатая фаза; б — нематическая фаза.

Непосредственная причина ориентации или переориентации директора — анизотропия вязкоупругих, оптич., электрич. или магн. свойств среды. В свою очередь, изменение преимуществ. ориентации молекул вызывает изменение оптич., электрич. и др. свойств Ж. к., т. е. создает возможность управления этими свойствами посредством сравнительно слабых внеш. воздействий, а также позволяет регистрировать указанные воздействия. Электрооптич. свойства нематич. Ж. к. широко используют в системах обработки и отображения информации, в буквенно-цифровых индикаторах (электронные часы, микрокалькуляторы, дисплеи и т. п.), оптич. затворах и др. светоклапанных устройствах. Преимущества этих приборов — низкая потребляемая мощность (порядка 0,1 мВт/см2), низкое напряжение питания (неск. В), что позволяет, напр., сочетать жидкокристаллич. дисплеи с интегральными схемами и тем самым обеспечивать миниатюризацию индикаторных приборов (плоские телевиз. экраны). Спиральная структура холестериков определяет их высокую оптич. активность (которая на неск. порядков выше, чем у обычных орг. жидкостей и твердых кристаллов) и способность селективно отражать циркулярно поляризованный свет видимого, ИК и УФ диапазонов. При изменении температуры, состава среды, напряженности электромагн. поля изменяется шаг спирали, что сопровождается изменением оптич. свойств, в частности цвета. Это позволяет измерять температуру тела по изменению цвета Ж. к., контактирующего с поверхностью тела. Жидкокристаллич. термография используется в технике для визуализации ИК, СВЧ излучений, в качестве неразрушающих методов контроля в микроэлектронике и др., в медицине — для диагностики ряда сосудистых и острых воспалит. заболеваний. Особое место среди жидкокристаллич. веществ занимают полимеры. Термотропные полимерные Ж. к. получают "хим. включением" мезогенных групп в состав линейных и гребнеобразных макромолекул. Это позволяет не только значительно увеличить количество жидкокристаллич. веществ, но и существенно расширить общие представления о природе жидкокристаллич. состояния. На основе полимеров можно получать жидкокристаллич. стекла, пленки, волокна и покрытия с заданными анизотропными свойствами. Мезогенные группы макромолекул легко ориентируются в мезофазе под действием внеш. полей (мех., электрич., магнитных), а при послед. охлаждении полимера ниже температуры стеклования полученная анизотропная структура фиксируется в твердом состоянии. Использование лиотропного жидкокристаллич. состояния на стадии переработки жесткоцепных полимеров — новый путь получения высокопрочных высокомодульных полимерных материалов. Ж. к. открыты в 1888 Ф. Рейнитцером и О. Леманом. Число описанных Ж. к. превышает десятки тысяч и непрерывно увеличивается.

Лит.: Жен П. Ж. де. Физика жидких кристаллов, пер. с англ., М., 1977; Блинов Л. М., Электро- и магнитооптика жидких кристаллов. М., 1978; Платэ Н. А., Шибаев В. П., Гребнеобразные полимеры и жидкие кристаллы, М., 1980; Пикин С. А., Структурные превращения в жидких кристаллах, М.. 1981, Сонин А. С., Введение в физику жидких кристаллов, М., 1983; Америк Ю. Б., Кренцель Б. А., Химия жидких кристаллов и мезоморфных полимерных систем. М., 1981, Современная кристаллография, т. 4, М., 1981, с. 425-83

В. П. Шибаев

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. ЖИДКИЕ КРИСТАЛЛЫ — Особое состояние нек-рых органич. в-в, в к-ром они обладают реологич. св-вами жидкости — текучестью, но сохраняют определ. упорядоченность в расположении молекул и анизотропию ряда физ. св-в, характерную для тв. кристаллов. Открыты в 1889 австр. Физический энциклопедический словарь
  2. Жидкие кристаллы — Жидкокристаллическое состояние, мезоморфное состояние, состояние вещества, в котором оно обладает свойствами жидкости (текучестью) и некоторыми свойствами твёрдых кристаллов (анизотропией (См. Анизотропия) свойств). Ж. Большая советская энциклопедия
  3. ЖИДКИЕ КРИСТАЛЛЫ — ЖИДКИЕ КРИСТАЛЛЫ — жидкости, обладающие анизотропией свойств (в частности, оптической) — связанной с упорядоченностью в ориентации молекул. Большой энциклопедический словарь