вулканизация

ВУЛКАНИЗАЦИЯ

технол. процесс, в котором пластичный каучук превращается в резину. В результате В. фиксируется форма изделия и оно приобретает необходимые прочность, эластичность, твердость, сопротивление раздиру, усталостную выносливость и др. полезные эксплуатационные свойства. С хим. точки зрения В. — соединение ("сшивание") гибких макромолекул каучука в трехмерную пространств. сетку (т. наз. вулканизационную сетку) редкими поперечными хим. связями. Образование сетки происходит под действием спец. хим. агента или (и) энергетич. фактора, напр. высокой температуры, ионизирующей радиации. Поперечные связи ограничивают необратимые перемещения макромолекул при мех. нагружении (уменьшают пластич. течение), но не изменяют их способности к высокоэластич. деформации (см. высокоэластическое состояние). Степень сшивания (густоту сетки поперечных связей) характеризуют равновесными модулями растяжения или сдвига, которые определяют при сравнительно небольших деформациях, равновесным набуханием в хорошем растворителе, а также содержанием макромолекул, оставшихся в сшитом образце вне сетки (зольфракция).

Структура вулканизационной сетки. Механизм вулканизации. Вулканизац. сетка имеет сложное строение. В ней наряду с узлами, в которых соединяются две макромолекулы (тетрафункциональные узлы), наблюдаются также полифункциональные узлы (соединение в одном узле неск. макромолекул). Свойства сеток зависят от концентрации поперечных хим. связей, их распределения и хим. строения, а также от средней мол. массы и ММР вулканизуемого каучука, разветвленности его макромолекул, содержания в сетке зольфракции и др. Оптимальная густота сетки достигается при участии в сшивании всего 1–2% мономерных звеньев макромолекулы. Дефектами сетки м. б. своб. концы макромолекул, не вошедшие в нее, но к ней присоединенные; сшивки, соединяющие участки одной и той же цепи; захлесты или переплетения цепей и т. д.

Поперечные хим. связи — мостики образуются под действием разл. агентов В. и представляют собой фрагменты молекул самого агента. От хим. состава этих мостиков зависят мн. эксплуатац. характеристики резин, напр. сопротивление термоокислит. старению, скорость накопления остаточных деформаций в условиях сжатия при повышенных температурах, стойкость к действию агрессивных сред. Влияние хим. состава и длины поперечных связей на прочность резин при обычной температуре надежно не установлено.

Строение сетки вулканизатов, наполненных технич. углеродом (сажей), сложнее, чем ненаполненных, из-за сильного физ и хим. взаимод. каучука с наполнителем. Для таких вулканизатов количеств. связь между параметрами сетчатой структуры и эксплуатац. характеристиками до сих пор не найдена. Однако существуют разнообразные качеств. и полуколичеств. зависимости, которые широко используют для разработки рецептур резин и прогнозирования их поведения при В.

На практике, чтобы обеспечить высокую производительность оборудования, стремятся к миним. продолжительности В., но в условиях, обеспечивающих эффективную переработку смесей и получение резин с наилучшими свойствами. Весь процесс принято подразделять на три периода: 1) индукционный; 2) период формирования сетки; 3) перевулканизация (реверсия). По продолжительности индукц. периода, когда измеримое сшивание не наблюдается, определяют стойкость резиновой смеси к преждевременной вулканизации (подвулканизации). Последняя затрудняет переработку смеси и приводит к ухудшению качества изделий. Этот период особенно важен при В. многослойных изделий, т. к. с увеличением его продолжительности усиливаются слипание отдельных слоев смеси при формировании изделия и совулканизация слоев.

Завершению периода формирования сетки соответствует оптимум вулканизации — время, за которое обычно достигается образование вулканизата с наилучшими свойствами. Технически важная характеристика — плато вулканизации, т. е. отрезок времени, в течение которого значения измеряемого параметра, близкие к оптимальным, изменяются сравнительно мало. К перевулканизации приводит продолжение нагревания резины после израсходования агента В. Перевулканизация проявляется в дальнейшем повышении жесткости вулканизата (напр., при В. полибутадиена, сополимеров бутадиена со стиролом или акрилонитрилом) или, наоборот, в его размягчении (при В. полиизопрена, бутил-каучука, этилен-пропиленового каучука). Эти изменения свойств связаны с термической перестройкой вулканизац. сетки, термич. и термоокислит. превращениями макромолекул.

Элементарные реакции, протекающие при В., определяются хим. строением каучука и агента В., а также условиями процесса. Обычно, независимо от характера этих реакций, различают 4 стадии В. На первой, охватывающей в основном индукц. период, агент В. переходит в активную форму: в результате его реакции с ускорителями и активаторами процесса образуется т. наз. действительный агент В. (ДАВ). [Применение сравнительно стабильных компонентов вулканизующей системы обусловлено необходимостью относительно длительного (до одного года) их хранения на резиновых заводах, а также сохранения в течение некоторого времени пластичности резиновой смеси, поскольку в противном случае исключается возможность формования изделия.]

Собственно сшивание охватывает две стадии: а) активацию макромолекул в результате их реакции с ДАВ, приводящей к образованию полимерного своб. радикала, полимерного иона или активного промежут. продукта присоединения агента В. к макромолекуле; б) взаимод. двух активированных макромолекул (или активированной и неактивированной) с образованием поперечной связи. На 4-й стадии происходит перестройка "первичных" поперечных связей в термически и химически более устойчивые структуры; при В. каучуков спец. назначения, напр. полисилоксановых или фторкаучуков, этой цели служит отдельная технол. операция — выдержка в воздушных термостатах.

Специфич. особенности рассмотренных реакций — высоковязкая среда, а также большой избыток каучука по сравнению с количеством агента В. (обычно 1–5% от массы каучука). Большинство агентов В. плохо растворимо (твердые вещества) или плохо совместимо (жидкости) с каучуком; поэтому для равномерного диспергирования агента В. в среде каучука в виде частиц (капель) минимально возможного размера применяют спец. диспергаторы, являющиеся ПАВ для данной системы. Хорошим диспергатором служит, напр., стеарат цинка, который образуется в резиновой смеси при реакции стеариновой кислоты с ZnO, применяемыми в качестве активаторов серной В. Присутствие полярных группировок в макромолекуле, полярных нерастворимых веществ в резиновой смеси и ряд др. факторов способствует локальному концентрированию даже растворимых в каучуке агентов В. Вследствие этого реакции, обусловливающие В., идут частично как гомогенные (растворенный ДАВ), а частично как гетерогенные [реакции на границе раздела каучук — частица (капля) ДАВ]. Полагают, что гетерогенные реакции приводят к образованию сетки с узким ММР отрезков макромолекул между сшивками, благодаря чему повышаются эластичность, динамич. выносливость и прочность вулканизатов. Статистич. распределение поперечных связей, характерное для гомогенных реакций, предпочтительнее при получении уплотнит. резин, наиб. важное свойство которых — малое накопление остаточных деформаций при сжатии.

Поскольку от доли гетерог. реакций зависит строение вулканизац. сетки, свойства вулканизатов определяются не только механизмом хим. реакций, но и размером и распределением дисперсных частиц агента В. и ДАВ в каучуке, интенсивностью межмол. взаимод. на межфазной границе и др. Влияние этих факторов проявляется при смешении каучука с ингредиентами и переработке резиновой смеси. Поэтому свойства вулканизата зависят от "предыстории" конкретного образца.

Технология вулканизации. Вулканизующие системы. Большинство резиновых смесей подвергается В. при 130–200 °C в спец. агрегатах (прессы, автоклавы, форматоры-вулканизаторы, солевые ванны, котлы, литьевые машины и др.) с применением разнообразных теплоносителей (перегретый водяной пар, горячий воздух, электрообогрев и др.). Герметики, резиновые покрытия и др. часто вулканизуют ок. 20 °C ("холодная" В.).

Круг агентов вулканизации довольно широк, а выбор их определяется хим. строением каучука, условиями эксплуатации изделий и приемлемым технол. способом проведения В. Для диеновых каучуков (гомо- и сополимеров изопрена или бутадиена) наиб. широко применяют т. наз. серную вулканизацию. Ее используют в производстве автомобильных покрышек и камер, мн. видов резиновой обуви, РТИ и др. Мировое потребление серы для В. превышает 100 тыс. т/год (среднее ее содержание в резиновой смеси составляет 1,5% по массе).

Наиб. важные компоненты серной вулканизующей системы — ускорители вулканизации; варьируя их тип и количество (при обязательном присутствии активатора В. — смеси ZnO со стеариновой кислотой), удается в широких пределах изменять скорость В., структуру сетки и свойства резин. Именно хим. строение ускорителя определяет скорость образования и реакционная способность ДАВ. В случае серной вулканизации он представляет собой полисульфидное соединение ускорителя (Уск) типа Уск-Sх-Уск или Уск-Sx-Zn-Sy-Уск. В результате реакций ДАВ с α-метиленовыми группами или (и) двойными связями макромолекулы образуются поперечные связи, содержащие один или неск. атомов серы.

В промышленности в качестве ускорителей серной В. наиб. широко (70% общего объема потребления этих ингредиентов) применяют замещенные тиазолы и сульфенамиды. Первые, напр. 2-меркаптобензотиазол, дибензотиазолилдисульфид, обеспечивают широкое плато В. и высокое сопротивление резин термоокислит. старению. Сульфенамиды, напр. N-циклогексил-2-бензотиазолилсульфенамид (сульфенамид Ц), морфолилтиабензотиазол (сульфенамид М), уменьшают склонность смесей к преждевременной В., улучшают формуемость смесей и монолитность изделий, задерживают побочные процессы (напр., деструкцию и изомеризацию каучука).

В присут. ускорителей из группы тиурамов, напр. тетра-метилтиурамдисульфида, дипентаметилентиурамтетрасульфида, получают резины с повыш. теплостойкостью. Эти соединения, обеспечивающие высокую скорость серной В., способны вулканизовать диеновые каучуки и без элементной серы. Еще большее ускорение В. наблюдается при использовании т. наз. ультраускорителей-дитиокарбаматов и ксантогенатов. В присут. первых (диметилдитиокарбамат Zn, диэтилдитиокарбамат диэтиламина) резиновые смеси м. б. вулканизованы в течение короткого времени при 110–125 °C. Водорастворимые представители этой группы соединений, напр. диметилдитиокарбамат Na, используют для В. латексных смесей и некоторых резиновых клеев. Ксантогенаты, напр. бутилксантогенат Zn, применяют гл. обр. в клеевых композициях, вулканизующихся при 20–100 °C.

Первые введенные в практику ускорители серной В. — альдегидамины (продукты конденсации анилина с альдегидами) и гуанидины (гл. обр. дифенилгуанидин) — характеризуются замедленным действием. Благодаря этому они удобны при получении эбонитов и массивных изделий. Дифенилгуанидин, кроме того, широко применяют в комбинации с тиазолами для повышения активности последних; разработано большое число двойных систем ускорителей, которые обеспечивают более эффективную В., чем каждый из них в отдельности.

Для эффективного уменьшения склонности к подвулкани-зации резиновых смесей с серной вулканизующей системой применяют замедлители подвулканизации-N-HH-трозодифениламин, фталевый ангидрид, N-циклогексилтиофталимид. Действие этих ингредиентов сводится к уменьшению скорости реакций компонентов вулканизующей системы с каучуком или между собой при образовании ДАВ.

С целью получения резин со спец. свойствами в промышленности расширяется применение таких агентов В., как орг. пероксиды, алкилфеноло-формальд. смолы, олигоэфиракрилаты и др. непредельные соединения, орг. полигалогенпроизводные, нитрозосоединения и др. Растет также интерес к В. под действием радиац. излучения и других физ. факторов. Пероксидные и радиац. резины отличаются повыш. теплостойкостью и улучшенными диэлектрич. свойствами; резины, вулканизованные алкилфеноло-формальд. смолами,- высокой стойкостью к перегретому пару.

В. каучуков, содержащих в макромолекуле функц. группы, возможна также с помощью соединений, вступающих с этими группами в хим. реакции. Так, винилпиридиновые каучуки вулканизуются полигалогенпроизводными, галогенсодержащие каучуки (полихлоропрен, хлорсульфированный полиэтилен, хлорбутилкаучук, фторкаучуки) — диаминами и полиолами, уретановые-диизоцианатами.

Лит.: Гофманн В., Вулканизация и вулканизующие агенты, пер. с нем., Л., 1968; Блох Г. А., Органические ускорители вулканизации и вулканизирующие системы для эластомеров, Л., 1978; Донцов А. А., Процессы структурирования эластомеров, М., 1978; Догадкин Б. А., Донцов А. А., Шершне в В. А., Химия эластомеров, 2 изд., М., 1981; Донцов А. А., Шершнев В. А., "ЖВХО им. Д. И. Менделеева", 1986, т. 31, № 1.

А. А. Донцов

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. вулканизация — -и, ж. тех. Обработка каучука обычно серой при повышенной температуре для превращения его в резину. Метод горячей вулканизации. Малый академический словарь
  2. Вулканизация — Технологический процесс резинового производства, при котором пластичный «сырой» каучук превращается в резину. При В. повышаются прочностные характеристики каучука, его твёрдость, эластичность, тепло- и морозостойкость... Большая советская энциклопедия
  3. вулканизация — орф. вулканизация, -и Орфографический словарь Лопатина
  4. Вулканизация — (от лат. Vulcan — бог огня), технологический процесс резинового производства, при котором каучук превращается в резину. Автомобильный словарь
  5. вулканизация — Вулкан/из/а́ци/я [й/а]. Морфемно-орфографический словарь
  6. ВУЛКАНИЗАЦИЯ — ВУЛКАНИЗАЦИЯ, химический процесс, разработанный в 1839 г. Чарльзом Гудьиром и служащий для повышения износостойкости и упругости резины путем нагревания серы или ее соединений вместе с натуральной или синтетической резиной. Уже в 1845 г. процесс был использован для создания первой надувной шины. Научно-технический словарь
  7. вулканизация — ВУЛКАНИЗАЦИЯ -и; ж. Технологический процесс превращения каучука в резину. Метод горячей вулканизации. ◁ Вулканизационный, -ая, -ое. В-ые процессы. Толковый словарь Кузнецова
  8. вулканизация — ВУЛКАНИЗАЦИЯ, и, ж. (спец.). Технологический процесс превращения каучука в резину. | прил. вулканизационный, ая, ое. Толковый словарь Ожегова
  9. вулканизация — Вулканизации, мн. нет, ж. [латин. Vulcanus – огонь, пламя, первонач. имя римского бога огня]. Технологический процесс резинового производства, при котором сырой каучук превращается в резину. Большой словарь иностранных слов
  10. вулканизация — ВУЛКАНИЗ’АЦИЯ, вулканизации, ·жен. (·срн. вулкан) (тех.). Обработка каучука путем нагревания его с серой для придания эластичности и твердости. Толковый словарь Ушакова
  11. вулканизация — Заимствование из английского, где vulcanization образовано от глагола vulcanize – "вулканизировать". Глагол этот имеет искусственное происхождение – его предложил английский химик Гэнкок, который и изобрел процесс вулканизации. См. вулкан. Этимологический словарь Крылова
  12. вулканизация — вулканизация ж. Технологический процесс обработки при повышенной температуре сырого каучука для превращения его в резину. Толковый словарь Ефремовой
  13. ВУЛКАНИЗАЦИЯ — ВУЛКАНИЗАЦИЯ — превращение каучука в резину, осуществляемое с участием т. н. вулканизующих агентов (напр., серы, органических пероксидов, некоторых синтетических смол) или под действием ионизирующей радиации. Большой энциклопедический словарь
  14. Вулканизация — См. Каучук, Гуттаперча. Энциклопедический словарь Брокгауза и Ефрона