атомно-абсорбционный анализ

АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ (атомно-абсорбционная спектрометрия)

метод количеств. элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора (см. ниже), пропускают излучение в диапазоне 190–850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетич. состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера — Ламберта–Бера (см. абсорбционная спектроскопия), мерой концентрации элемента служит оптич. плотность A = lg(I0/I), где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.

атомно-абсорбционный анализ

Принципиальная схема пламенного атомно-абсорбционного спектрометра: 1 — источник излучения; 2 — пламя; 3 — монохроматор; 4 — фотоумножитель; 5 — регистрирующий или показывающий прибор.

Приборы для А.-а.а. — атомно-абсорбц. спектрометры-прецизионные высокоавтоматизир. устройства, обеспечивающие воспроизводимость условий измерений, автоматич. введение проб и регистрацию результатов измерения. В некоторые модели встроены микроЭВМ. В качестве примера на рис. приведена схема одного из спектрометров. Источником линейчатого излучения в спектрометрах чаще всего служат одноэлементные лампы с полым катодом, заполняемые неоном. Для определения некоторых легколетучих элементов (Cd, Zn, Se, Те и др.) удобнее пользоваться высокочастотными безэлектродными лампами.

Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе-обычно в пламени или трубчатой печи. Наиб. часто используют пламя смесей ацетилена с воздухом (макс. температура 2000 °C) и ацетилена с N2O (2700 °C). Горелку со щелевидным соплом длиной 50–100 мм и шириной 0,5–0,8 мм устанавливают вдоль оптич. оси прибора для увеличения длины поглощающего слоя.

Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Макс. температура нагрева достигает 3000 °C. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Ta, Mo), кварца с нихромовым нагревателем. Для защиты графитовых и металлич. печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Ar, N2).

Введение проб в поглощающую зону пламени или печи осуществляют разными приемами. Растворы распыляют (обычно в пламя) с помощью пневматич. распылителей, реже — ультразвуковых. Первые проще и стабильнее в работе, хотя уступают последним в степени дисперсности образующегося аэрозоля. Лишь 5–15% наиб. мелких капель аэрозоля поступает в пламя, а остальная часть отсеивается в смесительной камере и выводится в сток. Макс. концентрация твердого вещества в растворе обычно не превышает 1%. В противном случае происходит интенсивное отложение солей в сопле горелки.

Термич. испарение сухих остатков растворов — осн. способ введения проб в трубчатые печи. При этом чаще всего пробы испаряют с внутр. поверхности печи; раствор пробы (объемом 5–50 мкл) вводят с помощью микропипетки через дозировочное отверстие в стенке трубки и высушивают при 100 °C. Однако пробы испаряются со стенок при непрерывном возрастании температуры поглощающего слоя, что обусловливает нестабильность результатов. Чтобы обеспечить постоянство температуры печи в момент испарения, пробу вводят в предварительно нагретую печь, используя угольный электрод (графитовую кювету) графитовый тигель (печь Вудриффа), металлич. или графитовый зонд. Пробу можно испарять с платформы (графитового корытца), которую устанавливают в центре печи под дозировочным отверстием. В результате значит. отставания температуры платформы от температуры печи, нагреваемой со скоростью ок. 2000 К/с, испарение происходит при достижении печью практически постоянной температуры.

Для введения в пламя твердых веществ или сухих остатков растворов используют стержни, нити, лодочки, тигли из графита или тугоплавких металлов, помещаемые ниже оптич. оси прибора, так что пары пробы поступают в поглощающую зону с потоком газов пламени. Графитовые испарители в ряде случаев дополнительно подогревают электрич. током. Для исключения мех. потерь порошкообразных проб в процессе нагрева применяются испарители типа цилиндрических капсул, изготовленные из пористых сортов графита.

Иногда растворы проб подвергают в реакционном сосуде обработке в присутствии восстановителей, чаще всего NaBH4. При этом Hg, напр., отгоняется в элементном виде, As, Sb, Bi и др. — в виде гидридов, которые вносятся в атомизатор потоком инертного газа. Для монохроматизации излучения используют призмы или дифракционные решетки; при этом достигают разрешения от 0,04 до 0,4 нм.

При А.-а. а. необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются разл. приемами, напр. модулируют излучение источника с частотой, на которую настраивают приемно — регистрирующее устройство, применяют двухлучевую схему или оптич. схему с двумя источниками света (с дискретным и непрерывным спектрами). Наиб. эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магн. полю, что позволяет учесть неселективные спектральные помехи, достигающие значений А = 2, при измерении сигналов, которые в сотни раз слабее.

Достоинства А.-а.а. — простота, высокая селективность и малое влияние состава пробы на результаты анализа. Ограничения метода — невозможность одновременного определения неск. элементов при использовании линейчатых источников излучения и, как правило, необходимость переведения проб в раствор.

А.-а.а. применяют для определения ок. 70 элементов (гл. обр. металлов). Не определяют газы и некоторые др. неметаллы, резонансные линии которых лежат в вакуумной области спектра (длина волны меньше 190 нм). С применением графитовой печи невозможно определять Hf, Nb, Ta, W и Zr, образующие с углеродом труднолетучие карбиды. Пределы обнаружения большинства элементов в растворах при атомизации в пламени 1–100 мкг/л, в графитовой печи в 100–1000 раз ниже. Абс. пределы обнаружени в последнем случае составляют 0,1–100 пг. Относит. стандартное отклонение в оптимальных условиях измерений достигает 0,2–0,5% для пламени и 0,5–1,0% для печи. В автоматич. режиме работы пламенный спектрометр позволяет анализировать до 500 проб в час, а спектрометр с графитовой печью-до 30 проб. Оба варианта часто используют в сочетании с предварит. разделением и концентрированием экстракцией, дистилляцией, ионным обменом, хроматографией, что в ряде случаев позволяет косвенно определять некоторые неметаллы и орг. соединения.

Методы А.-а. а. применяют также для измерения некоторых физ. и физ.-хим. величин — коэф. диффузии атомов в газах, температур газовой среды, теплот испарения элементов и др.; для изучения спектров молекул, исследования процессов, связанных с испарением и диссоциацией соединений.

Лит.: Львов Б. В., Атомно-абсорбционный спектральный анализ, М, 1966; Прайс В., Аналитическая атомно-абсорбционная спектроскопия, пер. с англ., М., 1976; Харламов И.П., Еремина Г. В., Атомно-абсорбционный анализ в черной металлургии, М., 1982; Николаев Г. И., Немец А. М., Атомно-абсорбционная спектроскопия в исследовании испарения металлов, М., 1982; Хавезов И., Цалев Д., Атомно-абсорбционный анализ, пер. с болг., Л., 1983.

Б. В. Львов, Л. К. Ползик

Источник: Химическая энциклопедия на Gufo.me


Значения в других словарях

  1. Атомно-абсорбционный анализ — Веществa (a. atomic-absorption material analysis; н. atomare Absorptionsanalyse der Stoffe; ф. analyse de la matiere par absorption atomique; и. analisis del material del роr absorcion atomica) — метод количеств. Горная энциклопедия