Персептрон

Персептро́н

Перцептрон (англ. perceptron, нем. Perzeptron, от лат. perceptio — понимание, познавание, восприятие), математическая модель процесса восприятия (См. Восприятие). Сталкиваясь с новыми явлениями или предметами, человек их узнаёт, то есть относит к тому или иному понятию (классу). Так, мы легко узнаём знакомых, даже если они изменили причёску или одежду, можем читать рукописи, хотя каждый почерк имеет свои особенности, узнаём мелодию в различной аранжировке и т.д. Эта способность человека и получила название феномена восприятия. Человек умеет на основании опыта вырабатывать и новые понятия, обучаться новой системе классификации. Например, при обучении различению рукописных знаков ученику показывают рукописные знаки и сообщают, каким буквам они соответствуют, то есть к каким классам эти знаки относятся; в результате у него вырабатывается умение правильно классифицировать знаки.

Считают, что восприятие осуществляется при помощи сети Нейронов. Модель восприятия (персептивная модель) может быть представлена в виде трёх слоев нейронов: рецепторного слоя (S), слоя преобразующих нейронов (А) и слоя реагирующих нейронов (R) (рис.). Нейрон (согласно наиболее простой модели Мак-Каллока — Питса)— это нервная клетка, которая имеет несколько входов и один выход. Входы могут быть либо возбуждающие, либо тормозные. Нейрон возбуждается и посылает импульс в том случае, если число сигналов на возбуждающих входах превосходит число сигналов на тормозных входах на некоторую величину, называемую порогом срабатывания нейрона. В зависимости от характера внешнего раздражения в S-слое образуется некая совокупность импульсов (сигналов), которые, распространяясь по нервным путям, достигают нейронов А-слоя, где в соответствии с совокупностью пришедших импульсов образуются новые импульсы, поступающие на входы нейронов R-слоя. В нейронах А-слоя суммируются входные сигналы с одним и тем же коэффициентом усиления (возможно с разными знаками), в нейронах же R-слоя суммируются сигналы с различными как по величине, так и по знаку коэффициентами. Восприятие какого-либо объекта соответствует возбуждению определённого нейрона R-слоя. Считают, что коэффициент усиления реагирующих нейронов подобраны так, что различным объектам одного класса соответствуют совокупности импульсов, возбуждающие один и тот же нейрон R-слоя. Формирование нового понятия заключается в установлении коэффициента усиления соответствующего реагирующего нейрона.

В 1957 американский учёный Ф. Розенблатт построил техническую модель зрительного анализатора, названную им П. «Марк-1». В П. «Марк-1» моделью рецепторного нейрона служил Фотоэлемент, моделью преобразующего нейрона — Пороговый элемент с коэффициентом усиления ±1, а моделью реагирующего нейрона — пороговый элемент с настраиваемыми коэффициентами. Входы пороговых элементов А-слоя соединялись с фотоэлементами случайно. П. Розенблатта предназначался для работы в режиме эксплуатации и режиме обучения. В режиме эксплуатации П. классифицировал предъявленные ему ситуации; если из всех R-элементов возбуждался только Ri-элемент, то ситуация относилась к i-тому классу. В ходе обучения по последовательности предъявляемых для обучения примеров вырабатывались коэффициент усиления пороговых элементов R-слоя.

П. «Марк-1» был первой из немногих технических моделей восприятия. В дальнейшем процесс восприятия исследовался методами моделирования на ЦВМ. В 60-х гг. П., или персептивными схемами, стали называть модели восприятия, в которых различают три части: воспринимающую часть, преобразующую часть и реагирующие пороговые элементы. Воспринимающая часть ставит в соответствие каждому объекту вектор x̅, который преобразующей частью переводится в вектор y̅. Вектор относят к j-тому классу, если соответствующая взвешенная сумма реагирующего Rj-элемента превосходит его порог срабатывания. Математическое исследование персептронных схем связано с задачей обучения распознаванию образов (См. Распознавание образов), где выясняется, как должна быть построена преобразующая часть и каков алгоритм установления коэффициента усиления R-элементов в режиме обучения.

Лит.: Розенблатт Ф., Принципы нейродинамики, пер. с англ., М., 1965; Минский М., Пейперт С., Персептроны, пер, с англ., М., 1971; Вапник В. Н., Червоненкис А. Я., Теория распознавания образов, М., 1974.

В. Н. Вапник.

Персептрон

Простейшая структурная схема персептивной модели (персептрона): S-элементы — рецепторы (рецепторный слой нейронов); А-элементы — преобразующие нейроны; R-элементы — реагирующие нейроны. Стрелками показаны направления распространения импульсов по нервным связям.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. персептрон — орф. персептрон, -а Орфографический словарь Лопатина
  2. Персептрон — (англ. perception восприятие) кибернетическая система, реализующая алгоритм обучения распознаванию образов и способная осуществлять классификацию объектов. Медицинская энциклопедия
  3. ПЕРСЕПТРОН — ПЕРСЕПТРОН (англ. perseptron, от лат. perseptio — восприятие) — устройство, моделирующее процесс восприятия; впервые предложено американским ученым Ф. Розенблаттом (F. Rosenblatt) в 1957 (зрительный анализатор "Марк-1"). Большой энциклопедический словарь