Линейная вектор-функция

Лине́йная ве́ктор-функция

Функция f(x) векторного переменного х, обладающая следующими свойствами: 1) f(x + у) = f(x) + f(y), 2) fx) = λ f(x) (λ — число). Л. в.-ф. в n-мерном пространстве вполне определяется значениями, принимаемыми ею для n линейно независимых векторов. Скалярную (принимающую числовые значения) Л. в.-ф. называют также линейным функционалом (См. Линейный функционал); в n-mepном пространстве она выражается линейной формой (См. Линейная форма), f(x) = a1x1 + a2x2 +... + anxn от координат x1, x2,..., xn вектора х. Примером скалярной Л. в.-ф. является скалярное произведение вектора х и некоторого постоянного вектора а:

f(x) = (а, х),

в пространстве, в котором определено скалярное произведение, всякая скалярная Л. в.-ф. имеет такой вид. Векторная (принимающая векторные значения) Л. в.-ф. определяет линейное или аффинное преобразование пространства и называется также линейным оператором (См. Линейный оператор), или аффинором. Векторная Л. в.-ф. у = f(x) в n-мерном пространстве выражается в координатах формулами:

y1 = a11x1 + a12x2 + ... + a1nxn,

y2 = a21x1 + a22x2 + ... + a2nxn,

...

yn = an1x1 + an2x2 + ... + annxn.

Здесь числа aij (i, j = 1, 2,..., n) составляют матрицу векторной Л. в.-ф. Если определить сумму векторных Л. в.-ф. f(x) и g(x) как Л. в.-ф. f(x) + g(x), а произведение тех же функций, как Л. в.-ф. g{f(x)}, то сумме и произведению векторных Л. в.-ф. будут соответствовать сумма и произведение соответствующих матриц. Примером векторной Л. в.-ф. является Л. в.-ф. вида:

f(x) = (A1, х)a1 + (А2, х)a2 +... + (An, х)an,

где A1, A2, ..., An, a1, a2, ...an — постоянные векторы; в n-мерном пространстве, в котором определено скалярное произведение, всякая векторная Л. в.-ф. может быть представлена в таком виде.

Функцию нескольких векторных переменных, являющуюся Л. в.-ф. относительно каждого своего аргумента, называют полилинейной (билинейной, трилинейной и т. д.) вектор-функцией. Скалярное и векторное произведения двух переменных векторов могут служить примерами, соответственно скалярной и векторной билинейных вектор-функций. Полилинейные вектор-функции приводят к понятию Тензора. О Л. в.-ф. (линейных функционалах и операторах) в бесконечномерном пространстве см. Функциональный анализ.

Источник: Большая советская энциклопедия на Gufo.me